已知是二元一次方程2x+y=14的解,则k的值是( )
A. 2 B. ﹣2 C. 3 D. ﹣3
如图,小明用6个相同的小正方体搭成的立体图形研究几何体的三视图的变化情况,若由图①变到图②,不改变的是( )
A. 主视图 B. 主视图和左视图
C. 主视图和俯视图 D. 左视图和俯视图
下列运算正确的是( )
A. m6÷m2=m3 B. (x+1)2=x2+1 C. (3m2)3=9m6 D. 2a3•a4=2a7
﹣1的相反数是( )
A. 1 B. 0 C. ﹣1 D. 2
已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D.
(1)求此二次函数解析式;
(2)连接DC、BC、DB,求证:△BCD是直角三角形;
(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.
温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排x人生产乙产品.
(1)根据信息填表
产品种类 | 每天工人数(人) | 每天产量(件) | 每件产品可获利润(元) |
甲 |
|
| 15 |
乙 |
|
(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.
(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.