如图,直线AB和CD相交于点O.若∠AOD与∠BOC的和为236°,则∠AOC的度数为( )
A. 62° B. 118° C. 72° D. 59°
如图,下列各组角中,互为对顶角的是( )
A. ∠1和∠2 B. ∠1和∠3 C. ∠2和∠4 D. ∠2和∠5
如图,在平面直角坐标系中,直线y=﹣x+3与抛物线y=﹣x2+bx+c交于A、B两点,点A在x轴上,点B的横坐标为﹣1.动点P在抛物线上运动(不与点A、B重合),过点P作y轴的平行线,交直线AB于点Q,当PQ不与y轴重合时,以PQ为边作正方形PQMN,使MN与y轴在PQ的同侧,连结PM.设点P的横坐标为m.
(1)求b、c的值.
(2)当点N落在直线AB上时,直接写出m的取值范围.
(3)当点P在A、B两点之间的抛物线上运动时,设正方形PQMN周长为c,求c与m之间的函数关系式,并写出c随m增大而增大时m的取值范围.
(4)当△PQM与y轴只有1个公共点时,直接写出m的值.
如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.
(1)填空:抛物线的顶点坐标为 (用含m的代数式表示);
(2)求△ABC的面积(用含a的代数式表示);
(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.
如图①,AB是⊙O的直径,,连接AC.
(1)求证:∠CAB=45°;
(2)如图②,直线l经过点C,在直线l上取一点D,使BD=AB,BD与AC相交于点E,连接AD,且AD=AE.
①求证:直线l是⊙O的切线;
②求的值.
某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:
(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;
(2)当降价多少元时,每星期的利润最大?最大利润是多少?