完成下面的推理.
如图,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,试说明:AB∥CD.
完成推理过程:
∵BE平分∠ABD(已知),
∴∠ABD=2∠α(__________).
∵DE平分∠BDC(已知),
∴∠BDC=2∠β (__________).
∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)( __________).
∵∠α+∠β=90°(已知),
∴∠ABD+∠BDC=180°(__________).
∴AB∥CD(____________________).
如图,∠BAD=∠DCB,∠BAC=∠DCA,试说明:AD∥BC.
【解析】
∵∠BAD=∠DCB,∠BAC=∠DCA(已知),
∴∠BAD- =∠DCB- (等式的性质),
即 = .
∴AD∥BC( ).
如图,P,Q分别是直线EF外两点.
(1)过点P画直线AB∥EF,过点Q画直线CD∥EF;
(2)AB与CD有怎样的位置关系?为什么?
根据图形说出下列各对角是什么位置关系?
(1)∠1和∠2;(2)∠1和∠7;(3)∠3和∠4;(4)∠4和∠6;(5)∠5和∠7.
如图,两直线AB,CD相交于点O,OE平分∠BOD,∠AOC∶∠AOD=7∶11.
(1)求∠COE的度数;
(2)若OF⊥OE,求∠COF的度数.
如图,直线AB,CD相交于点O,∠AOE=∠BOE,OB平分∠DOF.若∠DOE=50°,求∠DOF的度数.