满分5 > 初中数学试题 >

如图,C、D是以AB为直径的⊙O上的点,,弦CD交AB于点E. (1)当PB是⊙...

如图,C、D是以AB为直径的O上的点,,弦CD交AB于点E.

(1)当PB是O的切线时,求证:∠PBD=∠DAB;

(2)求证:BC2﹣CE2=CE•DE;

(3)已知OA=4,E是半径OA的中点,求线段DE的长.

 

(1)证明见解析(2)证明见解析(3) 【解析】 (1)由AB是⊙O的直径知∠BAD+∠ABD=90°,由PB是⊙O的切线知∠PBD+∠ABD=90°,据此可得答案; (2)连接OC,设圆的半径为r,则OA=OB=OC=r,证△ADE∽△CBE得DE•CE=AE•BE=r2-OE2,由知∠AOC=∠BOC=90°,根据勾股定理知CE2=OE2+r2、BC2=2r2,据此得BC2-CE2=r2-OE2,从而得证; (3)先求出BC=4、CE=2,根据BC2-CE2=CE•DE计算可得. (1)∵AB是⊙O的直径, ∴∠ADB=90°,即∠BAD+∠ABD=90°, ∵PB是⊙O的切线, ∴∠ABP=90°,即∠PBD+∠ABD=90°, ∴∠BAD=∠PBD; (2)∵∠A=∠C、∠AED=∠CEB, ∴△ADE∽△CBE, ∴,即DE•CE=AE•BE, 如图,连接OC, 设圆的半径为r,则OA=OB=OC=r, 则DE•CE=AE•BE=(OA﹣OE)(OB+OE)=r2﹣OE2, ∵, ∴∠AOC=∠BOC=90°, ∴CE2=OE2+OC2=OE2+r2,BC2=BO2+CO2=2r2, 则BC2﹣CE2=2r2﹣(OE2+r2)=r2﹣OE2, ∴BC2﹣CE2=DE•CE; (3)∵OA=4, ∴OB=OC=OA=4, ∴BC==4, 又∵E是半径OA的中点, ∴AE=OE=2, 则CE===2, ∵BC2﹣CE2=DE•CE, ∴(4)2﹣(2)2=DE•2, 解得:DE=.
复制答案
考点分析:
相关试题推荐

三国时期,魏国数学家刘徽为古籍《九章算术》作注释时,指出用出入相补法验证勾股定理,如图所示,请加以说明.

 

查看答案

如图,在直角梯形ABCD中,ADBC,ABBC,BC=5,CD=6,DCB=60°,等边PMN(N为固定点)的边长为x,边MN在直线BC上,NC=8.将直角梯形ABCD绕点C按逆时针方向旋转到①的位置,再绕点D1按逆时针方向旋转到②的位置,如此旋转下去.

(1)将直角梯形按此方法旋转四次,如果等边PMN的边长为x≥5+3,求梯形与等边三角形的重叠部分的面积;

(2)将直角梯形按此方法旋转三次,如果梯形与等边三角形的重叠部分的面积是,求等边PMN的边长x的范围.

(3)将直角梯形按此方法旋转三次,如果梯形与等边三角形的重叠部分的面积是梯形面积的一半,求等边PMN的边长x.

 

查看答案

某市高铁站将于今年年底使用,计划在广场内种植A、B两种花木共2000棵,若种植A种花木的数量比种植B种花木数量的3倍多400棵.

(1)求种植A、B两种花木的数量分别是多少棵?

(2)如果园林处安排12人同时种植这两种花木,每人每天能种植A种花木40棵或B种花木30棵,应分别安排多少人种植A种花木和B种花木,才能确保同时完成各自的任务?

 

查看答案

某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:

 

85

80

75

80

90

73

83

79

90

 

(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.

(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分(不计其他因素条件),请你说明谁将被录用.

 

查看答案

如图,反比例函数y=的图象过点A(1,3),请根据下列条件试用无刻度的直尺分别在图1和图2中按要求画图.

(1)在图1中取一点B,使其坐标为(﹣1,﹣3);

(2)在图2中,在(1)中画图的基础上,画一个平行四边形ACBD.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.