满分5 > 初中数学试题 >

如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点...

如图1,二次函数yax22ax3aa0)的图象与x轴交于AB两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D

1)求顶点D的坐标(用含a的代数式表示);

2)若以AD为直径的圆经过点C

①求抛物线的函数关系式;

②如图2,点Ey轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点PMN分别和点OBE对应),并且点MN都在抛物线上,作MFx轴于点F,若线段MFBF12,求点MN的坐标;

③点Q在抛物线的对称轴上,以Q为圆心的圆过AB两点,并且和直线CD相切,如图3,求点Q的坐标.

 

(1)(1,﹣4a);(2)①y=﹣x2+2x+3;②M(,)、N(,);③点Q的坐标为(1,﹣4+2)或(1,﹣4﹣2). 【解析】 分析: (1)将二次函数的解析式进行配方即可得到顶点D的坐标. (2)①以AD为直径的圆经过点C,即点C在以AD为直径的圆的圆周上,依据圆周角定理不难得出△ACD是个直角三角形,且∠ACD=90°,A点坐标可得,而C、D的坐标可由a表达出来,在得出AC、CD、AD的长度表达式后,依据勾股定理列等式即可求出a的值. ②将△OBE绕平面内某一点旋转180°得到△PMN,说明了PM正好和x轴平行,且PM=OB=1,所以求M、N的坐标关键是求出点M的坐标;首先根据①的函数解析式设出M点的坐标,然后根据题干条件:BF=2MF作为等量关系进行解答即可. ③设⊙Q与直线CD的切点为G,连接QG,由C、D两点的坐标不难判断出∠CDQ=45°,那么△QGD为等腰直角三角形,即QD ²=2QG ²=2QB ²,设出点Q的坐标,然后用Q点纵坐标表达出QD、QB的长,根据上面的等式列方程即可求出点Q的坐标. 详解: (1)∵y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a, ∴D(1,﹣4a). (2)①∵以AD为直径的圆经过点C, ∴△ACD为直角三角形,且∠ACD=90°; 由y=ax2﹣2ax﹣3a=a(x﹣3)(x+1)知,A(3,0)、B(﹣1,0)、C(0,﹣3a),则: AC2=9a2+9、CD2=a2+1、AD2=16a2+4 由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4, 化简,得:a2=1,由a<0,得:a=﹣1, ②∵a=﹣1, ∴抛物线的解析式:y=﹣x2+2x+3,D(1,4). ∵将△OBE绕平面内某一点旋转180°得到△PMN, ∴PM∥x轴,且PM=OB=1; 设M(x,﹣x2+2x+3),则OF=x,MF=﹣x2+2x+3,BF=OF+OB=x+1; ∵BF=2MF, ∴x+1=2(﹣x2+2x+3),化简,得:2x2﹣3x﹣5=0 解得:x1=﹣1(舍去)、x2=. ∴M(,)、N(,). ③设⊙Q与直线CD的切点为G,连接QG,过C作CH⊥QD于H,如下图: ∵C(0,3)、D(1,4), ∴CH=DH=1,即△CHD是等腰直角三角形, ∴△QGD也是等腰直角三角形,即:QD2=2QG2; 设Q(1,b),则QD=4﹣b,QG2=QB2=b2+4; 得:(4﹣b)2=2(b2+4), 化简,得:b2+8b﹣8=0,解得:b=﹣4±2; 即点Q的坐标为(1,)或(1,).
复制答案
考点分析:
相关试题推荐

如图,C、D是以AB为直径的O上的点,,弦CD交AB于点E.

(1)当PB是O的切线时,求证:∠PBD=∠DAB;

(2)求证:BC2﹣CE2=CE•DE;

(3)已知OA=4,E是半径OA的中点,求线段DE的长.

 

查看答案

三国时期,魏国数学家刘徽为古籍《九章算术》作注释时,指出用出入相补法验证勾股定理,如图所示,请加以说明.

 

查看答案

如图,在直角梯形ABCD中,ADBC,ABBC,BC=5,CD=6,DCB=60°,等边PMN(N为固定点)的边长为x,边MN在直线BC上,NC=8.将直角梯形ABCD绕点C按逆时针方向旋转到①的位置,再绕点D1按逆时针方向旋转到②的位置,如此旋转下去.

(1)将直角梯形按此方法旋转四次,如果等边PMN的边长为x≥5+3,求梯形与等边三角形的重叠部分的面积;

(2)将直角梯形按此方法旋转三次,如果梯形与等边三角形的重叠部分的面积是,求等边PMN的边长x的范围.

(3)将直角梯形按此方法旋转三次,如果梯形与等边三角形的重叠部分的面积是梯形面积的一半,求等边PMN的边长x.

 

查看答案

某市高铁站将于今年年底使用,计划在广场内种植A、B两种花木共2000棵,若种植A种花木的数量比种植B种花木数量的3倍多400棵.

(1)求种植A、B两种花木的数量分别是多少棵?

(2)如果园林处安排12人同时种植这两种花木,每人每天能种植A种花木40棵或B种花木30棵,应分别安排多少人种植A种花木和B种花木,才能确保同时完成各自的任务?

 

查看答案

某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:

 

85

80

75

80

90

73

83

79

90

 

(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.

(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分(不计其他因素条件),请你说明谁将被录用.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.