有这样一个问题:
计算代数式(其中x≠0)的值后填入下表.并根据表格所反映出的(其中x≠0)的值与x之间的变化规律进行探究.
x | …… | 0.25 | 0.5 | 1 | 10 | 100 | 1000 | 10000 | …… |
…… |
|
|
|
|
|
|
| …… |
下面是小东计算代数式(其中x≠0)的值后填入表格,并根据表格进行探究的过程,请补充完整:
x | …… | 0.25 | 0.5 | 1 | 10 | 100 | 1000 | 10000 | …… |
…… | 2 | 1 |
| …… |
(1)上表是(其中x≠0)与x的几组对应值.直接写出x=10时,求代数式的值;
(2)随着x值的增大,代数式的值有何变化(回答“增大”或“减少”);
(3)当x值无限增大时,代数式的值无限趋近于一个数,这个数是多少.
已知:如图,点C、D是线段AB上的两点,线段AC:CD:DB=2:3:4,点E、F分别是线段AC、DB的中点,且线段EF=12cm,求线段AB的长.
已知:如图,∠AOC=50°,OD平分∠AOC.求∠COD的度数.
列方程解应用题
甲、乙两城相距1120千米,一列快车从甲城出发开往乙城,行驶120千米后,另一列动车从乙城出发开往甲城,动车出发2个小时后与快车相遇,若快车每小时行驶的路程比动车每小时行驶的路程的一半多5千米,动车平均每小时行驶多少千米?
先化简,再求值:,其中,.
如图,点A、B、C、D,按照下列语句画出图形:
(1)画直线AB;
(2)画射线BD;
(3)连接BC;
(4)线段AC和射线BD相交于点O;
(5)反向延长线段BC至E,使BE=BC.