下列计算正确的是( )
A. (a3)4=a12 B. a3•a5=a15 C. (x2y)3=x6y D. a6÷a3=a2
如图,四个图标中是轴对称图形的是( )
A. B. C. D.
如图所示,数轴上从左到右的三个点A,B,C所对应数的分别为a,b,c.其中点A、点B两点间的距离AB的长是2019,点B、点C两点间的距离BC的长是1000,
(1)若以点C为原点,直接写出点A,B所对应的数;
(2)若原点O在A,B两点之间,求|a|+|b|+|b﹣c|的值;
(3)若O是原点,且OB=19,求a+b﹣c的值.
在一次“探究性学习”课中,李老师设计了如下数表:
n | 2 | 3 | 4 | 5 | … |
a | 22﹣1 | 32﹣1 | 42﹣1 | 52﹣1 | … |
b | 4 | 6 | 8 | 10 | … |
c | 22+1 | 32+1 | 42+1 | 52+1 | … |
(1)用含自然数n(n>1)的代数式表示:a,b,c.
(2)当c=101时,求n的值;
(3)用等式表示a、b、c之间的数量关系
有这样一个问题:
计算代数式(其中x≠0)的值后填入下表.并根据表格所反映出的(其中x≠0)的值与x之间的变化规律进行探究.
x | …… | 0.25 | 0.5 | 1 | 10 | 100 | 1000 | 10000 | …… |
…… |
|
|
|
|
|
|
| …… |
下面是小东计算代数式(其中x≠0)的值后填入表格,并根据表格进行探究的过程,请补充完整:
x | …… | 0.25 | 0.5 | 1 | 10 | 100 | 1000 | 10000 | …… |
…… | 2 | 1 |
| …… |
(1)上表是(其中x≠0)与x的几组对应值.直接写出x=10时,求代数式的值;
(2)随着x值的增大,代数式的值有何变化(回答“增大”或“减少”);
(3)当x值无限增大时,代数式的值无限趋近于一个数,这个数是多少.
已知:如图,点C、D是线段AB上的两点,线段AC:CD:DB=2:3:4,点E、F分别是线段AC、DB的中点,且线段EF=12cm,求线段AB的长.