如图,将边长为4的正方形ABCD沿着折痕EF折叠,使点B落在边AD的中点G处.
(1)求线段BE的长;
(2)连接BF、GF,求证:BF=GF;
(3)求四边形BCFE的面积.
如图,在▱ABCD中,过点D作DE⊥BD交BA的延长线于点E.
(1)当▱ABCD是菱形时,证明:AE=AB;
(2)当▱ABCD是矩形时,设∠E=α,问:∠E与∠DOA满足什么数量关系?写出结论并说明理由.
如图,矩形ABCD中,AC、BD相交于O,AE平分∠BAD交BC于E,若∠CAE=15°,求∠BOE的度数.
如图,在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,CF=AE,连接AF,BF.
(1)求证:四边形BFDE是矩形;
(2)已知∠DAB=60°,AF是∠DAB的平分线,若AD=3,求DC的长度.
如图,已知四边形ABCD是平行四边形,若点E、F分别在边BC、AD上,连接AE、CF,若∠AEB=∠CFD.
求证:四边形AECF是平行四边形.
如图,在平面直角坐标系中有一边长为l的正方形OABC,边OA、OC分别在x轴、y轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OBl为边作第三个正方形OBlB2C2,照此规律作下去,则点B2020的坐标为__________.