如图,在△ABC中,AD⊥BC,AB=10,BD=8,CD=2.
(1)求AD的长.
(2)求△ABC的周长.
计算:sin 45°+cos230°-+2sin 60°.
如图,MN表示一段笔直的高架道路,线段AB表示高架道路旁的一排居民楼,已知点A到MN的距离为15米,BA的延长线与MN相交于点D,且∠BDN=30°,假设汽车在高速道路上行驶时,周围39米以内会受到噪音(XRS)的影响.
(1)过点A作MN的垂线,垂足为点H,如果汽车沿着从M到N的方向在MN上行驶,当汽车到达点P处时,噪音开始影响这一排的居民楼,那么此时汽车与点H的距离为多少米?
(2)降低噪音的一种方法是在高架道路旁安装隔音板,当汽车行驶到点Q时,它与这一排居民楼的距离QC为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长(精确到1米)(参考数据:≈1.7)?
如图,在△ABC中,∠A=30°,∠B=45°,AC=2,则AB的长为_______.
在Rt△ABC中,∠C=90°,sinB=,求cosA的值.
如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A滑行至B,已知AB=500米,则这名滑雪运动员的高度下降_______米(参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67).