如图,已知二次函数和二次函数图象的顶点分别为M、N ,与x轴分别相交于A、B两点(点A在点B的左边)和C、D两点(点C在点D的左边),
(1))函数的顶点坐标为 ;当二次函数L1 ,L2 的值同时随着的增大而增大时,的取值范围是 ;
(2)当AD=MN时,求的值,并判断四边形AMDN的形状(直接写出,不必证明);
(3)当B,C是线段AD的三等分点时,求a的值.
如图,在⊙O中,AB是⊙O的直径,AE是弦,OG⊥AE于点G,交⊙O 于点D,连结BD交AE于点F,延长AE至点C,连结BC.
(1)当BC=FC时,证明:BC是⊙O的切线;
(2)已知⊙O的半径,当tanA=,求GF的长.
如图是一台放置在水平桌面上的笔记本电脑,将其侧面抽象成如右图所示的几何图形,若显示屏所在面的侧边AO与键盘所在面的侧边BO长均为24cm,点P为眼睛所在位置,D为AO的中点,连接PD,当PD?AO时,称点P为“最佳视角点”,作PC?BC,垂足C在OB的延长线上,且BC=12cm.
(1)当PA=45cm时,求PC的长;
(2)若?AOC=120°时,“最佳视角点”P在直线PC上的位置会发生什么变化?此时PC的长是多少?请通过计算说明.(结果精确到0.1cm,可用科学计算器,参考数据:,)
期末考试后,某市第一中学为了解本校九年级学生期末考试数学学科成绩情况,决定对该年级学生数学学科期末考试成绩进行抽样分析,已知九年级共有12个班,每班48名学生.请按要求回答下列问题:
收集数据
(1)若要从全年级学生中抽取一个96人的样本,你认为以下抽样方法中比较合理的有 .(只要填写序号即可)
①随机抽取两个班级的96名学生;②在全年级学生中随机抽取96名学生;③在全年级12个班中分别各随机抽取8名学生;④从全年级学生中随机抽取96名男生.
整理数据
(2)将抽取的96名学生的成绩进行分组,绘制频数分布表和成绩分布扇形统计图(不完整)如下.请根据图表中数据填空:
①C类和D类部分的圆心角度数分别为 、 ;
②估计全年级A、B类学生大约一共有 名.
分析数据
(3)学校为了解其它学校教学情况,将同层次的第一、第二两所中学的抽样数据进行对比,得下表:
学校 | 平均数(分) | 极差(分) | 方差 | A、B类的频率和 |
第一中学 | 71 | 52 | 432 | 0.75 |
第二中学 | 71 | 80 | 497 | 0.82 |
你认为哪所学校的教学效果较好?结合数据,请提出一个合理解释来支持你的观点.
如图所示,在平面直角坐标系中,等腰Rt△OAB的一条直角边OA 在x轴的正半轴上,点B在双曲线上,且∠BAO=90°,.
(1)求k的值及点A的坐标;
(2)△OAB沿直线OB平移,当点A恰好在双曲线上时,求平移后点A的对应点A′的坐标.
如图,点A、B、C是4× 4网格上的格点,连接点A、B、C得△ABC,请分别在下列图中使用无刻度的直尺按要求画图.
(1)在图1中,在AC上找一点M,使;
(2)在图2中,在△ABC 内部(不含边界)找一点N,使.