如图,一张四边形纸片ABCD,AB=20,BC=16,CD=13,AD=5,对角线AC⊥BC.
(1)求AC的长;
(2)求四边形纸片ABCD的面积;
(3)若将四边形纸片ABCD沿AC剪开,拼成一个与四边形纸片ABCD面积相等的三角形,直接写出拼得的三角形各边高的长.
[感知]
如图①,△ABC是等边三角形,D是边BC上一点(点D不与点B、C重合),作∠EDF=60°,使角的两边分别交边AB、AC于点E、F,且BD=CF.若DE⊥BC,则∠DFC的大小是 度;
[探究]
如图②,△ABC是等边三角形,D是边BC上一点(点D不与点B、C重合),作∠EDF=60°,使角的两边分别交边AB、AC于点E、F,且BD=CF.求证:BE=CD;
[应用]
在图③中,若D是边BC的中点,且AB=2,其它条件不变,如图③所示,则四边形AEDF的周长为 .
题目:如图,在△ABC中,点D是BC边上一点,连结AD,若AB=10,AC=17,BD=6,AD=8,解答下列问题:
(1)求∠ADB的度数;
(2)求BC的长.
小强做第(1)题的步骤如下:∵AB2=BD2+AD2
∴△ABD是直角三角形,∠ADB=90°.
(1)小强解答第(1)题的过程是否完整,如果不完整,请写出第(1)题完整的解答过程
(2)完成第(2)题.
如图,点B、F、C、E在同一条直线上,点A、D在直线BC的异侧,AB=DE,AC=DF,BF=EC.
(1)求证:△ABC≌△DEF;
(2)直接写出图中所有相等的角.
为了解某市的空气质量情况,某环保兴趣小组从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计.根据空气污染指数的不同,将空气质量分为A、B、C、D和E五个等级,分别表示空气质量优、良、轻度污染、中度污染、重度污染,并绘制了如下两幅不完整的统计图.根据图中的信息,解答下列问题:
(1)求被抽取的天数;
(2)补全条形统计图,并求扇形统计图中表示空气质量为中度污染的扇形的圆心角度数;
(3)在这次抽取的天数中,求空气质量为良占的百分比.
先化简,再求值:(2a+b)2﹣(2a+3b)(2a﹣3b),其中a=,b=﹣2.