“2018东台西溪半程马拉松”的赛事共有两项:A、“半程马拉松”、 B、“欢乐跑”。小明参加了该项赛事的志愿者服务工作, 组委会随机将志愿者分配到两个项目组.
(1)小明被分配到“半程马拉松”项目组的概率为________.
(2)为估算本次赛事参加“半程马拉松”的人数,小明对部分参赛选手作如下调查:
调查总人数 | 20 | 50 | 100 | 200 | 500 |
参加“半程马拉松”人数 | 15 | 33 | 72 | 139 | 356 |
参加“半程马拉松”频率 | 0.750 | 0.660 | 0.720 | 0.695 | 0.712 |
①请估算本次赛事参加“半程马拉松”人数的概率为_______.(精确到0.1)
②若本次参赛选手大约有3000人,请你估计参加“半程马拉松”的人数是多少?
如图,在下列正方形网格图中,等腰三角形ABC与等腰三角形A1B1C1的顶点均在格点上,且△ABC与△A1B1C1关于某点中心对称,已知A,C1,C三点的坐标分别是(0,4),(0,3),(0,2)
(1)求对称中心的坐标;
(2)画出△ABC绕点B按顺时针旋转90°后的△A2BC2,并写出点A的对应点A2的坐标.
为了方便孩子入学,小王家购买了一套学区房,交首付款15万元,剩余部分向银行贷款,贷款及贷款利息按月分期还款,每月还款数相同.计划每月还款y万元,x个月还清贷款,若y是x的反比例函数,其图象如图所示:
(1)求y与x的函数解析式;
(2)若小王家计划180个月(15年)还清贷款,则每月应还款多少万元?
如图所示,已知△AOB∽△DOC,OA=2,AD=9,OB=5,DC=12,∠A=58°,求AB、OC的长和∠D的度数.
已知关于x的一元二次方程x2+2x+m=0.
(1)当m=3时,判断方程的根的情况;
(2)当m=﹣3时,求方程的根.
用公式法解一元二次方程:x2﹣4x+2=0.