满分5 > 初中数学试题 >

已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于...

已知二次函数y=ax2+bx﹣3a经过点A﹣10)、C03),与x轴交于另一点B,抛物线的顶点为D

1)求此二次函数解析式;

2)连接DCBCDB,求证:△BCD是直角三角形;

3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.

 

(1)抛物线的解析式为y=﹣x2+2x+3.(2)证明见解析;(3)点P坐标为(, )或(2,3). 【解析】试题(1)将A(﹣1,0)、C(0,3),代入二次函数y=ax2+bx﹣3a,求得a、b的值即可确定二次函数的解析式;(2)分别求得线段BC、CD、BD的长,利用勾股定理的逆定理进行判定即可;(3)分以CD为底和以CD为腰两种情况讨论.运用两点间距离公式建立起P点横坐标和纵坐标之间的关系,再结合抛物线解析式即可求解. 试题解析:(1)∵二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),∴将A(﹣1,0)、C(0,3),代入,得,解得,∴抛物线的解析式为y=﹣x2+2x+3;(2)如图,连接DC、BC、DB,由y=﹣x2+2x+3=﹣(x﹣1)2+4得,D点坐标为(1,4),∴CD==,BC==3,BD==2,∵CD2+BC2=()2+(3)2=20,BD2=(2)2=20,∴CD2+BC2=BD2,∴△BCD是直角三角形;(3)y=﹣x2+2x+3对称轴为直线x=1.假设存在这样的点P,①以CD为底边,则P1D=P1C,设P1点坐标为(x,y),根据勾股定理可得P1C2=x2+(3﹣y)2,P1D2=(x﹣1)2+(4﹣y)2,因此x2+(3﹣y)2=(x﹣1)2+(4﹣y)2,即y=4﹣x.又P1点(x,y)在抛物线上,∴4﹣x=﹣x2+2x+3,即x2﹣3x+1=0,解得x1=,x2=<1,(不满足在对称轴右侧应舍去),∴x=,∴y=4﹣x=,即点P1坐标为(, ).②以CD为一腰,∵点P2在对称轴右侧的抛物线上,由抛物线对称性知,点P2与点C关于直线x=1对称,此时点P2坐标为(2,3).∴符合条件的点P坐标为(, )或(2,3).
复制答案
考点分析:
相关试题推荐

一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80/kg,销售单价不低于120/kg.且不高于180/kg,经销一段时间后得到如下数据:

销售单价x(元/kg
 

120
 

130
 


 

180
 

每天销量ykg
 

100
 

95
 


 

70
 

 

yx的关系是我们所学过的某一种函数关系.

1)直接写出yx的函数关系式,并指出自变量x的取值范围;

2)当销售单价为多少时,销售利润最大?最大利润是多少?

 

查看答案

如图,⊙O的直径AB10cm,弦BC5cmDE分别是∠ACB的平分线与⊙OAB的交点,PAB延长线上一点,且PCPE

1)求ACAD的长;

2)试判断直线PC与⊙O的位置关系,并说明理由.

 

查看答案

A、B两组卡片共5张,A组的三张分别写有数字2,4,6,B组的两张分别写有3,5.它们除了数字外没有任何区别

(1)随机从A组抽取一张,求抽到数字为2的概率;

(2)随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?

 

查看答案

如图,已知反比例函数y1与一次函数y2k2x+b的图象交于点A24),B(﹣4m)两点.

1)求k1k2b的值;

2)求AOB的面积;

3)请直接写出不等式≥k2x+b的解.

 

查看答案

关于x的一元二次方程有两个不相等的实数根.

(1)求k的取值范围

(2)请选择一个k的负整数值,并求出方程的根.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.