下面是小东设计的“在三角形一边上求作一个点,使这点和三角形的两个顶点构成的三角形与原三角形相似”的尺规作图过程.
已知:△ABC.
求作:在BC边上求作一点P,使得△PAC∽△ABC.
作法:如图,
①作线段AC的垂直平分线GH;
②作线段AB的垂直平分线EF,交GH于点O;
③以点O为圆心,以OA为半径作圆;
④以点C为圆心,CA为半径画弧,交⊙O于点D(与点A不重合);
⑤连接线段AD交BC于点P.
所以点P就是所求作的点.
根据小东设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:∵CD=AC,
∴= .
∴∠ =∠ .
又∵∠ =∠ ,
∴△PAC∽△ABC( )(填推理的依据).
如图,在四边形ABCD中,AD∥BC,AB⊥BC,点E在AB上,AD=1,AE=2,BC=3,BE=1.5.求证:∠DEC=90°.
如图,在△ABC中,∠B为锐角,AB=3,BC=7,sinB=,求AC的长.
已知二次函数 y=x2+2x﹣3.
(1)将y=x2+2x﹣3用配方法化成y=a (x﹣h)2+k的形式;
(2)求该二次函数的图象的顶点坐标.
计算:2cos30°﹣4sin45°+.
已知:.求:.