在如图所示的半圆中,P是直径AB上一动点,过点P作PC⊥AB于点P,交半圆于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为cm,A,C两点间的距离为cm.
小聪根据学习函数的经验,分别对函数,随自变量x的变化而变化的规律进行了探究.
下面是小聪的探究过程,请补充完整:
(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了,与x的几组对应值;
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 0 | 2.24 | 2.83 |
| 2.83 | 2.24 | 0 |
y2/cm | 0 | 2.45 | 3.46 | 4.24 | 4.90 | 5.48 | 6 |
(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,),(x,),并画出函数,的图象;
(3)结合函数图象,解决问题:当△APC有一个角是30°时,AP的长度约为______cm.
如图,AB是⊙O的直径,过点B作⊙O的切线BM,点A,C,D分别为⊙O的三等分点,连接AC,AD,DC,延长AD交BM于点E,CD交AB于点F.
(1)求证:CD∥BM;
(2)连接OE,若DE=m,求△OBE的周长.
在平面直角坐标系xOy中,直线y=x+2与双曲线相交于点A(m,3).
(1)求反比例函数的表达式;
(2)画出直线和双曲线的示意图;
(3)若P是坐标轴上一点,当OA=PA时.直接写出点P的坐标.
下面是小东设计的“在三角形一边上求作一个点,使这点和三角形的两个顶点构成的三角形与原三角形相似”的尺规作图过程.
已知:△ABC.
求作:在BC边上求作一点P,使得△PAC∽△ABC.
作法:如图,
①作线段AC的垂直平分线GH;
②作线段AB的垂直平分线EF,交GH于点O;
③以点O为圆心,以OA为半径作圆;
④以点C为圆心,CA为半径画弧,交⊙O于点D(与点A不重合);
⑤连接线段AD交BC于点P.
所以点P就是所求作的点.
根据小东设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:∵CD=AC,
∴= .
∴∠ =∠ .
又∵∠ =∠ ,
∴△PAC∽△ABC( )(填推理的依据).
如图,在四边形ABCD中,AD∥BC,AB⊥BC,点E在AB上,AD=1,AE=2,BC=3,BE=1.5.求证:∠DEC=90°.
如图,在△ABC中,∠B为锐角,AB=3,BC=7,sinB=,求AC的长.