在2017年的初中数学竞赛中,我校有5位同学获奖,他们的成绩分别是88,86,91,88,92.则由这组数据得到的以下结论,错误的是( )
A. 极差为6 B. 平均数为89 C. 众数为88 D. 中位数为91
不等式组的解集在数轴上表示正确的是( )
A. B. C. D.
|﹣2|的倒数是( )
A. B. - C. 2 D. ﹣2
如图,抛物线的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.
(1)求A、B、C的坐标;
(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PQMN的周长最大时,求△AEM的面积;
(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=DQ,求点F的坐标.
如图,已知,正方形ABCD和一个圆心角为45°的扇形,圆心与A点重合,此扇形绕A点旋转时,两半径分别交直线BC、CD于点P.K.
(1)当点P、K分别在边BC.CD上时,如图(1),求证:BP+DK=PK.
(2)当点P、K分别在直线BC.CD上时,如图(2),线段BP、DK、PK之间又有怎样的数量关系,请直接写出结论.
(3)在图(3)中,作直线BD交直线AP、AK于M、Q两点.若PK=5,CP=4,求PM的长.
如图,已知一次函数 y=x﹣3 与反比例函数 y=的图象相交于点 A(4,n),与 x 轴相交于点 B.
(1)求 n 与 k 的值;
(2)以 AB 为边作菱形 ABCD,使点 C 在 x 轴正半轴上,点 D 在第一象限,求点 D 的坐标;
(3)观察反比例函数y=的图象,当 y>﹣2 时,请直接写出自变量 x 的取值范围.