下面各图中表示y是x的函数的图像是( )
A. B. C. D.
下列变量之间的关系中,具有函数关系的有( )
①三角形的面积与底边长;②圆的面积与半径;③y=中的y与x(x)
A. 1个 B. 2个 C. 3个 D. 0个
在圆的周长公式C=2πr中,变量是( )
A. C,2,π,r B. π,r C. C,r D. r
如图,已知矩形OABC,点P在边OA上(不与端点重合),点Q在边CO上(不与端点重合).
(1)如图(1),若∠BPQ=90°,且△OPQ与△PAB和△QPB相似,请写出表示这三个三角形相似的式子,并探究此时线段OQ、QB、BA之间的数量关系.
(2)若∠PQB=90°,且△OPQ与△PAB、△QPB都相似,如图(2),请重新写出表示这三个三角形相似的式子,并证明AB:OA=2:3.
(3)在(1)中,若OA=8,OC=8,OP=CQ.以矩形OABC的两边OA、OC所在的直线分别为x轴和y轴,建立平面直角坐标系,如图(3),若某抛物线顶点为P,点B在抛物线上.
①求此抛物线的解析式.
②过线段BP上一动点M(点M与点P、B不重合),作y轴的平行线交抛物线于点N,若记点M的横坐标为m,试求线段MN的长L与m之间的函数关系式,画出该函数的示意图,并指出m取何值时,L有最大值,最大值是多少?
某市政府大力支持大学生创业.李明在政府的扶持下投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量Y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500.
(1)设李明每月获得利润为W(元),当销售单价定为多少元时,每月获得利润最大?
(2)根据物价不门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元?
(1)在下列表格中填上相应的值
x | … | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | … |
… | -1 |
| -2 |
|
|
| 3 |
|
| 1 | … |
(2)若将上表中的变量用y来代替(即有),请以表中的的值为点的坐标, 在下方的平面直角坐标系描出相应的点,并用平滑曲线顺次连接各点
(3)在(2)的条件下,可将y看作是x的函数 ,请你结合你所画的图像,写出该函数图像的两个性质 :__________________________________________________.
(4)结合图像,借助之前所学的函数知识,直接写出不等式的解集: ____________