某仓库有甲、乙、丙三辆运货车,每辆车只负责进货或出货,其中丙车每小时的运输量最多,乙车每小时的运输量最少,且乙车每小时的运输量为6吨.如图是从早晨上班开始库存量y(吨)与时间x(小时)的函数图像,OA段只有甲、丙车工作,AB段只有乙、丙车工作,BC段只有甲、乙车工作.
(1)你能确定甲、乙、丙三辆车哪辆是出货车吗?并说明理由.
(2)若甲、乙、丙三辆车一起工作,一天工作8小时,则仓库的库存量增加多少?
某礼堂共有25排座位,第一排有20个座位,后面每一排都比前一排多1个座位,写出每排的座位数m与这排的排数n的函数关系式并写出自变量n的取值范围.
上题中,在其他条件不变的情况下,请探究下列问题:
①当后面每一排都比前一排多2个座位时,则每排的座位数m与这排的排数n的函数关系式是______________(1≤n≤25,且n是正整数)
②当后面每一排都比前一排多3个座位、4个座位时,则每排的座位数m与这排的排数n的函数关系式分别是___________,___________(1≤n≤25,且n是正整数)
③某礼堂共有P排座位,第一排有a个座位,后面每一排都比前一排多b个座位,试写出每排的座位数m与这排的排数n的函数关系式,并写出自变量n的取值范围.
气温随着高度的升高而下降,下降的一般规律是从地面到高空11 km处(包括11 km),每升高1 km气温下降6 ℃;高于11 km时,气温不再发生变化,地面的气温为20 ℃时,设高空中x km处的气温为y ℃.
(1)当0≤x≤11时,求y和x之间的关系式;
(2)画出气温随高度(包括高于11 km)变化的图像;
(3)在离地面4.5 km及14 km的高空处,气温分别是多少?
如图,在长方形ABCD中,AB=4,BC=7,点P是BC边上与点B不重合的动点,过点P的直线交CD的延长线于点R,交AD于点Q(点Q与点D不重合),且∠RPC=45°.设BP=x,梯形ABPQ的面积为y,求y与x之间的函数关系式,并求出自变量x的取值范围.
甲、乙两人进行比赛的路程与时间的关系如图所示.
(1)这是一场________米比赛;
(2)前一半赛程内________的速度较快,最终________赢得了比赛;
(3)两人第________秒在途中相遇,相遇时距终点________米;
(4)甲在前8秒的平均速度是多少?甲在整个赛程的平均速度是多少?乙在前8秒的平均速度是多少?乙在整个赛程的平均速度是多少?
如图是某航空公司托运行李的费用y(元)与行李的质量x(千克)之间的关系,由图可以看出:
(1)当行李质量为30千克时,行李托运费是________元;
(2)当行李质量为________千克时,行李托运费是600元;
(3)每位旅客最多可以免费携带________千克的行李.