如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,交BC于点D,CD=2,AC=2.
(1)求∠B的度数;
(2)求AB和BC的长.
中国古代有着辉煌的数学成就,《周髀算经》,《九章算术》,《海岛算经》,《孙子算经》等是我国古代数学的重要文献.
(1)小聪想从这4部数学名著中随机选择1部阅读,则他选中《九章算术》的概率为 ;
(2)某中学拟从这4部数学名著中选择2部作为“数学文化”校本课程学习内容,求恰好选中《九章算术》和《孙子算经》的概率.
下面是小芸设计的“过圆外一点作已知圆的切线”的尺规作图过程.
已知:⊙O及⊙O外一点P.
求作:⊙O的一条切线,使这条切线经过点P.
作法:①连接OP,作OP的垂直平分线l,
交OP于点A;
②以A为圆心,AO为半径作圆,
交⊙O于点M;
③作直线PM,则直线PM即为⊙O的切线.
根据小芸设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明:
证明:连接OM,
由作图可知,A为OP中点,
∴OP为⊙A直径,
∴∠OMP= °,( )(填推理的依据)
即OM⊥PM.
又∵点M在⊙O上,
∴PM是⊙O的切线.( )(填推理的依据)
如图,在平面直角坐标系中,△AOB的三个顶点坐标分别为A(1,0),O(0,0),B(2,2).以点O为旋转中心,将△AOB逆时针旋转90°,得到△A1OB1.
(1)画出△A1OB1;
(2)直接写出点A1和点B1的坐标;
(3)求线段OB1的长度.
如图,△ABC中,点D在边AC上,且∠ABD=∠C.
(1)求证:△ADB∽△ABC;
(2)若AD=4,AC=9,求AB的长.
计算: tan60°﹣cos45°+sin30°.