下列各不等式的变形中,正确的是( )
A. 3x+6>10+2x,变形得5x>4
B. 1-<,变形得6-x-1<2(2x+1)
C. x+7>3x-3,变形得2x<10
D. 3x-2<1+4x,变形得x<-3
已知x>y,若对任意实数a,以下结论:
甲:ax>ay;乙:a2-x>a2-y;丙:a2+x≤a2+y;丁:a2x≥a2y
其中正确的是( )
A. 甲 B. 乙 C. 丙 D. 丁
对于平面直角坐标系xOy中的点P,Q和图形G,给出如下定义:点P,Q都在图形G上,且将点P的横坐标与纵坐标互换后得到点Q,则称点P,Q是图形G的一对“关联点”.例如,点P(1,2)和点Q(2,1)是直线y=﹣x+3的一对关联点.
(1)请写出反比例函数y=的图象上的一对关联点的坐标: ;
(2)抛物线y=x2+bx+c的对称轴为直线x=1,与y轴交于点C(0,﹣1).点A,B是抛物线y=x2+bx+c的一对关联点,直线AB与x轴交于点D(1,0).求A,B两点坐标.
(3)⊙T的半径为3,点M,N是⊙T的一对关联点,且点M的坐标为(1,m)(m>1),请直接写出m的取值范围.
正方形ABCD中,将边AB所在直线绕点A逆时针旋转一个角度α得到直线AM,过点C作CE⊥AM,垂足为E,连接BE.
(1)当0°<α<45°时,设AM交BC于点F,
①如图1,若α=35°,则∠BCE= °;
②如图2,用等式表示线段AE,BE,CE之间的数量关系,并证明;
(2)当45°<α<90°时(如图3),请直接用等式表示线段AE,BE,CE之间的数量关系.
如图,⊙O的直径AB=4cm,点C为线段AB上一动点,过点C作AB的垂线交⊙O于点D,E,连结AD,AE.设AC的长为xcm,△ADE的面积为ycm2.
小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小东的探究过程,请补充完整:
(1)确定自变量x的取值范围是 ;
(2)通过取点、画图、测量、分析,得到了y与x的几组对应值,如下表:
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 |
y/cm2 | 0 | 0.7 | 1.7 | 2.9 |
| 4.8 | 5.2 | 4.6 | 0 |
(3)如图,建立平面直角坐标系xOy,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(4)结合画出的函数图象,解决问题:当△ADE的面积为4cm2时,AC的长度约为 cm.
如图,AB是⊙O的直径,C为⊙O上一点,过点C作⊙O的切线交AB的延长线于点P,过点A作AD⊥PC于点D,AD与⊙O交于点E.
(1)求证:AC平分∠DAB.
(2)若AB=10,sin∠CAB=,请写出求DE长的思路.