满分5 > 初中数学试题 >

如图,已知⊙O是以AB为直径的△ABC的外接圆,过点A作⊙O的切线交OC的延长线...

如图,已知⊙O是以AB为直径的△ABC的外接圆,过点A作⊙O的切线交OC的延长线于点D,交BC的延长线于点E.

(1)求证:∠DAC=DCE;

(2)AB=2,sinD=,求AE的长.

 

(1)证明见解析;(2). 【解析】 试题(1)由切线的性质可知∠DAB=90°,由直角所对的圆周为90°可知∠ACB=90°,根据同角的余角相等可知∠DAC=∠B,然后由等腰三角形的性质可知∠B=∠OCB,由对顶角的性质可知∠DCE=∠OCB,故此可知∠DAC=∠DCE; (2)题意可知AO=1,OD=3,DC=2,由勾股定理可知AD=,由∠DAC=∠DCE,∠D=∠D可知△DEC∽△DCA,故此可得到DC2=DE•AD,故此可求得DE=,于是可求得AE=. 试题解析:(1)∵AD是圆O的切线,∴∠DAB=90°. ∵AB是圆O的直径,∴∠ACB=90°. ∵∠DAC+∠CAB=90°,∠CAB+∠ABC=90°,∴∠DAC=∠B. ∵OC=OB,∴∠B=∠OCB. 又∵∠DCE=∠OCB,∴∠DAC=∠DCE. (2)∵AB=2,∴AO=1. ∵sin∠D=,∴OD=3,DC=2. 在Rt△DAO中,由勾股定理得AD==. ∵∠DAC=∠DCE,∠D=∠D,∴△DEC∽△DCA,∴,即. 解得:DE=,∴AE=AD﹣DE=.
复制答案
考点分析:
相关试题推荐

有三张正面分别标有数字:-1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.

(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;

(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上的概率.

 

查看答案

如图,已知直线y=﹣x+3分别交x轴、y轴于点ABP是抛物线y=﹣x2+2x+5上的一个动点,其横坐标为a,过点P且平行于y轴的直线交直线y=﹣x+3于点Q,则当PQBQ时,a的值是_____

 

查看答案

如图,PQ分别是O的内接正五边形的边ABBC上的点,BP=CQ,则POQ=______

 

查看答案

如图,正三角形ABC的边长为4,D、E、F分别为BC、CA、AB的中点,以A、B、C三点为圆心,2为半径作圆,则图中的阴影面积为_____

 

查看答案

如图A是反比例函数y1= x>0)图象上一点过点Ax轴的平行线交反比例函数y2= x>0)的图象于点B连接OAOBOAB的面积为2,k的值为________

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.