某公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的售价和成本进行了调研,结果如下:一件商品的售价M(元)与时间t(月)的关系可用一条线段上的点来表示(如图甲),一件商品的成本Q(元)与时间t(月)的关系可用一段抛物线上的点来表示,其中6月份成本最高(如图乙).根据图象提供的信息解答下面的问题:
(1)一件商品在3月份出售时的利润是多少元?(利润=售价-成本)
(2)求出一件商品的成本Q(元)与时间t(月)之间的函数关系式;
(3)你能求出3月份至7月份一件商品的利润W(元)与时间t(月)之间的函数关系式吗?若该公司能在一个月内售出此种商品30 000件,请你计算该公司在一个月内最少获利多少元?
如图,抛物线与x轴交于A,B两点,它们的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F.已知点A的坐标为(﹣1,0).
(1)求该抛物线的解析式及顶点M的坐标;
(2)求△EMF与△BNF的面积之比.
如图,已知抛物线与直线交于点O(0,0),。点B是抛物线上O,A之间的一个动点,过点B分别作x轴、y轴的平行线与直线OA交于点C,E。
(1)求抛物线的函数解析式;
(2)若点C为OA的中点,求BC的长;
(3)以BC,BE为边构造条形BCDE,设点D的坐标为(m,n),求m,n之间的关系式。
已知二次函数y=ax2+bx+c(a≠0)的图象经过一次函数y=-x+3的图象与x轴、y轴的交点,并且也经过(1,1)点,求这个二次函数的关系式,并求x为何值时,函数有最大(最小)值?这个值是多少?
已知二次函数(m是常数)
(1)求证:不论m为何值,该函数的图像与x轴没有公共点;
(2)把该函数的图像沿x轴向下平移多少个单位长度后,得到的函数的图像与x轴只有一个公共点?
已知二次函数y=(x-2a)2+(a-1)(a为常数),当a取不同的值时,其图象构成一个“抛物线系”.如图分别是当a=-1,a=0,a=1,a=2时二次函数的图象.它们的顶点在一条直线上,这条直线的解析式是____________________.