满分5 > 初中数学试题 >

如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点...

如图,在△ABC中,DE分别是ABAC的中点,过点EEF∥AB,交BC于点F

1)求证:四边形DBFE是平行四边形;

2)当△ABC满足什么条件时,四边形DBEF是菱形?为什么?

 

(1)证明见解析;(2)当AB=BC时,四边形DBEF是菱形,理由见解析. 【解析】 试题(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据两组对边分别平行的四边形是平行四边形证明. (2)根据邻边相等的平行四边形是菱形证明. 试题解析: (1)∵D、E分别是AB、AC的中点, ∴DE是△ABC的中位线. ∴DE∥BC. 又∵EF∥AB, ∴四边形DBFE是平行四边形. (2)当AB=BC时,四边形DBEF是菱形. 理由如下: ∵D是AB的中点, ∴BD= AB. ∵DE是△ABC的中位线, ∴DE= BC. ∵AB=BC, ∴BD=DE. 又∵四边形DBFE是平行四边形, ∴四边形DBFE是菱形.
复制答案
考点分析:
相关试题推荐

如图,在ABCD中,点OACBD的交点,过点O的直线与BA的延长线,DC的延长线分别交于点EF.

(1)求证:△AOE≌△COF.

(2)连接ECAF,则EFAC满足什么数量关系时,四边形AECF是矩形?请说明理由.

 

查看答案

如图,分别以RtABC的直角边AC及斜边AB向外作等边ACD,等边ABE已知BAC=30°,EFAB,垂足为F,连接DF

(1)试说明AC=EF;

(2)求证:四边形ADFE是平行四边形

 

 

查看答案

如图△ABC中,D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.

(1)求证:四边形ADEF是平行四边形;

(2)求证:∠DHF=∠DEF.

 

查看答案

如图所示,已知在四边形ABCD中,ADBCACBD,点EFGHPQ分别是ABBCCDDAACBD的中点.求证:

(1)四边形EFGH是矩形;

(2)四边形EQGP是菱形.

 

查看答案

如图,在直角坐标系中,△ABC满足∠BCA90°,ACBC,点AC分别在x轴和y轴上,当点A从原点开始沿x轴的正方向运动时,则点C始终在y轴上运动,点B始终在第一象限运动.

1)当ABy轴时,求B点坐标.

2)随着AC的运动,当点B落在直线y3x上时,求此时A点的坐标.

3)在(2)的条件下,在y轴上是否存在点D,使以OABD为顶点的四边形面积是4?如果存在,请直接写出点D的坐标;如果不存在,请说明理由.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.