满分5 > 初中数学试题 >

如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限一点,C...

如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限一点,CBy,y轴负半轴于B(0,b),(a-3)2+|b+4|=0,S四边形AOBC=16.

(1)求C点坐标;

(2)如图2,D为线段OB上一动点,ADAC,ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数.

(3)如图3,D点在线段OB上运动时,DMADBCM,BMD、DAO的平分线交于N,D点在运动过程中,N的大小是否变化?若不变,求出其值,若变化,说明理由.

 

(1) C(5,﹣4);(2)90°;(3)见解析. 【解析】(1)利用非负数的和为零,各项分别为零,求出a,b即可; (2)用同角的余角相等和角平分线的意义即可; (3)利用角平分线的意义和互余两角的关系简单计算证明即可. (1)∵(a﹣3)2+|b+4|=0, ∴a﹣3=0,b+4=0, ∴a=3,b=﹣4, ∴A(3,0),B(0,﹣4), ∴OA=3,OB=4, ∵S四边形AOBC=16. ∴0.5(OA+BC)×OB=16, ∴0.5(3+BC)×4=16, ∴BC=5, ∵C是第四象限一点,CB⊥y轴, ∴C(5,﹣4); (2)如图, 延长CA,∵AF是∠CAE的角平分线, ∴∠CAF=0.5∠CAE, ∵∠CAE=∠OAG, ∴∠CAF=0.5∠OAG, ∵AD⊥AC, ∴∠DAO+∠OAG=∠PAD+∠PAG=90°, ∵∠AOD=90°, ∴∠DAO+∠ADO=90°, ∴∠ADO=∠OAG, ∴∠CAF=0.5∠ADO, ∵DP是∠ODA的角平分线, ∴∠ADO=2∠ADP, ∴∠CAF=∠ADP, ∵∠CAF=∠PAG, ∴∠PAG=∠ADP, ∴∠APD=180°﹣(∠ADP+∠PAD)=180°﹣(∠PAG+∠PAD)=180°﹣90°=90° 即:∠APD=90° (3)不变,∠ANM=45°理由:如图, ∵∠AOD=90°, ∴∠ADO+∠DAO=90°, ∵DM⊥AD, ∴∠ADO+∠BDM=90°, ∴∠DAO=∠BDM, ∵NA是∠OAD的平分线, ∴∠DAN=0.5∠DAO=0.5∠BDM, ∵CB⊥y轴, ∴∠BDM+∠BMD=90°, ∴∠DAN=0.5(90°﹣∠BMD), ∵MN是∠BMD的角平分线, ∴∠DMN=0.5∠BMD, ∴∠DAN+∠DMN=0.5(90°﹣∠BMD)+0.5∠BMD=45° 在△DAM中,∠ADM=90°, ∴∠DAM+∠DMA=90°, 在△AMN中, ∠ANM=180°﹣(∠NAM+∠NMA)=180°﹣(∠DAN+∠DAM+∠DMN+∠DMA)=180°﹣[(∠DAN+DMN)+(∠DAM+∠DMA)] =180°﹣(45°+90°)=45°, ∴D点在运动过程中,∠N的大小不变,求出其值为45°
复制答案
考点分析:
相关试题推荐

已知:如图,∠1=2,3=4,5=6.求证:EDFB.

 

查看答案

如图,ABC,CDAB,垂足为D,EBC,EFAB,垂足为F.1=2,判断DGBC是否平行,并说明理由.

 

查看答案

如图,已知点E,F分别是ABCD上的点,DE,AF分别交BC于点G,H,A=∠D,1=∠2.试说明:B=∠C.

 

查看答案

如图,AEF+∠CFE180°,1=∠2,EGHF平行吗?为什么?

 

查看答案

如图,直线ABCD相交于O点,OMAB.

(1)若∠1=2,求∠NOD

(2)若∠1=BOC,求∠AOC与∠MOD.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.