满分5 > 初中数学试题 >

如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<...

如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx轴,∠ABC=135°,且AB=4.

(1)填空:抛物线的顶点坐标为      (用含m的代数式表示);

(2)求ABC的面积(用含a的代数式表示);

(3)若ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.

 

(1)(m,2m﹣5);(2)S△ABC =﹣;(3)m的值为或10+2. 【解析】(1)利用配方法将二次函数解析式由一般式变形为顶点式,此题得解; (2)过点C作直线AB的垂线,交线段AB的延长线于点D,由AB∥x轴且AB=4,可得出点B的坐标为(m+2,4a+2m−5),设BD=t,则点C的坐标为(m+2+t,4a+2m−5−t),利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之取其正值即可得出t值,再利用三角形的面积公式即可得出S△ABC的值; (3)由(2)的结论结合S△ABC=2可求出a值,分三种情况考虑:①当m>2m−2,即m<2时,x=2m−2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元二次方程,解之可求出m的值;②当2m−5≤m≤2m−2,即2≤m≤5时,x=m时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值;③当m<2m−5,即m>5时,x=2m−5时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值.综上即可得出结论. (1)∵y=ax2﹣2amx+am2+2m﹣5=a(x﹣m)2+2m﹣5, ∴抛物线的顶点坐标为(m,2m﹣5), 故答案为:(m,2m﹣5); (2)过点C作直线AB的垂线,交线段AB的延长线于点D,如图所示, ∵AB∥x轴,且AB=4, ∴点B的坐标为(m+2,4a+2m﹣5), ∵∠ABC=135°, ∴设BD=t,则CD=t, ∴点C的坐标为(m+2+t,4a+2m﹣5﹣t), ∵点C在抛物线y=a(x﹣m)2+2m﹣5上, ∴4a+2m﹣5﹣t=a(2+t)2+2m﹣5, 整理,得:at2+(4a+1)t=0, 解得:t1=0(舍去),t2=﹣, ∴S△ABC=AB•CD=﹣; (3)∵△ABC的面积为2, ∴﹣=2, 解得:a=﹣, ∴抛物线的解析式为y=﹣(x﹣m)2+2m﹣5. 分三种情况考虑: ①当m>2m﹣2,即m<2时,有﹣(2m﹣2﹣m)2+2m﹣5=2, 整理,得:m2﹣14m+39=0, 解得:m1=7﹣(舍去),m2=7+(舍去); ②当2m﹣5≤m≤2m﹣2,即2≤m≤5时,有2m﹣5=2,解得:m=; ③当m<2m﹣5,即m>5时,有﹣(2m﹣5﹣m)2+2m﹣5=2, 整理,得:m2﹣20m+60=0, 解得:m3=10﹣2(舍去),m4=10+2. 综上所述:m的值为或10+2.
复制答案
考点分析:
相关试题推荐

如图:的直径,是弦,,延长到点,使得.

(1)求证:的切线;

(2),求的长.

 

查看答案

某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.

1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;

2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?

3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?

 

查看答案

如图,AB是⊙O的直径,C为⊙O上一点,经过点C的直线与AB的延长线交于点D,连接ACBC,∠BCD=∠CABE是⊙O上一点,弧CB=弧CE,连接AE并延长与DC的延长线交于点F

1)求证:DC是⊙O的切线;

2)若⊙O的半径为3sinD,求线段AF的长.

 

查看答案

如图在平面直角坐标系中,已知点A(﹣12),B34).

1)画出ABO向上平移2个单位,再向左平移4个单位后所得的图形A′B′O′

2)写出ABO后的对应点A′B′O′的坐标;

3)求两次平移过程中OB共扫过的面积.

 

查看答案

已知二次函数y=﹣x2+m3x+m

1)证明:不论m取何值,该函数图象与x轴总有两个公共点;

2)若该函数的图象与y轴交于点(05),求出顶点坐标,并画出该函数图象.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.