如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,4)、D(3,0).
(1)求经过点C的反比例函数的解析式;
(2)设P是(1)中所求函数图象上一点,以P、O、A顶点的三角形的面积与△COB的面积相等.求点P的坐标.
在直角坐标平面内,O为原点,点A的坐标为(1,0),点C的坐标为(0,4),直线CM∥x轴(如图所示).点B与点A关于原点对称,直线y=x+b(b为常数)经过点B,且与直线CM相交于点D,连接OD.
(1)求b的值和点D的坐标;
(2)设点P在x轴的正半轴上,若△POD是等腰三角形,求点P的坐标;
(3)在(2)的条件下,如果以PD为半径的圆P与圆O外切,求圆O的半径.
不透明的袋中装有3个大小相同的小球,其中两个为白色,一个为红色,随机地从袋中摸取一个小球后放回,再随机地摸取一个小球,(用列表或树形图求下列事件的概率)
(1)两次取的小球都是红球的概率;
(2)两次取的小球是一红一白的概率.
直线AB:y=﹣x+b分别与x,y轴交于A(6,0)、B 两点,过点B的直线交x轴负半轴于C,且OB:OC=3:1.
(1)求点B的坐标.
(2)求直线BC的解析式.
(3)直线 EF 的解析式为y=x,直线EF交AB于点E,交BC于点 F,求证:S△EBO=S△FBO.
(1)如图1,四边形AODE为平行四边形,当点D在圆上时,请你用无刻度的直尺在图中作出∠BAC的平分线;
(2)如图2,四边形AODE为平行四边形,当点D在圆内时,请你用无刻度的直尺在图中作出∠BAC的平分线.
如图,四边形ABCD的对角线AC⊥BD,垂足为O,点E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是矩形.