满分5 > 初中数学试题 >

数学课上学习了圆周角的概念和性质:“顶点在圆上,两边与圆相交”,“同弧所对的圆周...

数学课上学习了圆周角的概念和性质:顶点在圆上,两边与圆相交同弧所对的圆周角相等,小明在课后继续对圆外角和圆内角进行了探究.

下面是他的探究过程,请补充完整:

定义概念:顶点在圆外,两边与圆相交的角叫做圆外角,顶点在圆内,两边与圆相交的角叫做圆内角.如图1,∠M所对的一个圆外角.

(1)请在图2中画出所对的一个圆内角;

提出猜想

(2)通过多次画图、测量,获得了两个猜想:一条弧所对的圆外角______这条弧所对的圆周角;一条弧所对的圆内角______这条弧所对的圆周角;(大于等于小于”)

推理证明:

(3)利用图1或图2,在以上两个猜想中任选一个进行证明;

问题解决

经过证明后,上述两个猜想都是正确的,继续探究发现,还可以解决下面的问题.

(4)如图3FH是∠CDE的边DC上两点,在边DE上找一点P使得∠FPH最大.请简述如何确定点P的位置.(写出思路即可,不要求写出作法和画图)

 

(1)见解析(2)小于;大于(3)见解析(4)见解析 【解析】 (1)在⊙O内任取一点M,连接AM,BM; (2)观察图形,可知:一条弧所对的圆外角小于这条弧所对的圆周角;一条弧所对的圆内角大于这条弧所对的圆周角,此问得解; (3)(i)BM与⊙O相交于点C,连接AC,利用三角形外角的性质可得出∠ACB=∠M+∠MAC,进而可证出∠ACB>∠M;(ii)延长BM交⊙O于点C,连接AC,利用三角形外角的性质可得出∠AMB=∠ACB+∠CAM,进而可证出∠AMB>∠ACB; (4)由(2)的结论,可知:当过点F,H的圆与DE相切时,切点即为所求的点P. (1)如图2所示. (2)观察图形,可知:一条弧所对的圆外角小于这条弧所对的圆周角;一条弧所对的圆内角大于这条弧所对的圆周角. 故答案为:小于;大于. (3)证明:(i)如图1,BM与⊙O相交于点C,连接AC. ∵∠ACB=∠M+∠MAC, ∴∠ACB>∠M; (ii)如图4,延长BM交⊙O于点C,连接AC. ∵∠AMB=∠ACB+∠CAM, ∴∠AMB>∠ACB. (4)如图3,当过点F,H的圆与DE相切时,切点即为所求的点P.
复制答案
考点分析:
相关试题推荐

2016双十一期间,某快递公司计划租用甲、乙两种车辆快递货物,从货物量来计算:若租用两种车辆合运,10天可以完成任务;若单独租用乙种车辆,完成任务的天数是单独租用甲种车辆完成任务天数的2倍.

(1)求甲、乙两种车辆单独完成任务分别需要多少天?

(2)已知租用甲、乙两种车辆合运需租金65000元,甲种车辆每天的租金比乙种车辆每天的租金多1500元,试问:租甲和乙两种车辆、单独租甲种车辆、单独租乙种车辆这三种租车方案中,哪一种租金最少?请说明理由.

 

查看答案

已知关于x的一元二次方程x2+ax+a20

(1)若该方程的一个根为﹣2,求a的值及该方程的另一根;

(2)求证:无论a取何实数,该方程都有两个不相等的实数根.

 

查看答案

如图,已知菱形ABCD中,对角线ACBD相交于点O,过点CCEBD,过点DDEACCEDE相交于点E

(1)求证:四边形CODE是矩形;

(2)AB5AC6,求四边形CODE的周长.

 

查看答案

某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按ABCD四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:

(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)

1)请把条形统计图补充完整;

2)扇形统计图中D级所在的扇形的圆心角度数是多少?

3)若该校九年级有600名学生,请用样本估计体育测试中A级学生人数约为多少人?

 

查看答案

作图并填空

如图,在RtABC,∠BAC90°ADBCD,在②③图中,MNAB,∠MNE=∠B,现要以②③图为基础,在射线NE上确定一点P,构造出一个△MNP与①图中某一个三角形全等.

(1)用边长限制P点,画法:_____,可根据SASAASASAHL中的______得到______

(2)用直角限制点P,画法:_______,可根据SASAASASAHL中的______得到______

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.