满分5 > 初中数学试题 >

如图,直线AB和抛物线的交点是A(0,-3),B(5,9),已知抛物线的顶点D的...

如图,直线AB和抛物线的交点是A(0,-3)B(59),已知抛物线的顶点D的横坐标是2.

(1)求抛物线的解析式及顶点坐标;

(2)轴上是否存在一点C,与AB组成等腰三角形?若存在,求出点C的坐标,若不存在,请说明理由;

(3)在直线AB的下方抛物线上找一点P,连接PAPB使得△PAB的面积最大,并求出这个最大值.

 

(1),顶点D(2,);(2)C(,0)或(,0)或(,0);(3) 【解析】 (1)抛物线的顶点D的横坐标是2,则x2,抛物线过A(0,﹣3),则:函数的表达式为:y=ax2+bx﹣3,把B点坐标代入函数表达式,即可求解; (2)分AB=AC、AB=BC、AC=BC,三种情况求解即可; (3)由S△PAB•PH•xB,即可求解. (1)抛物线的顶点D的横坐标是2,则x2①,抛物线过A(0,﹣3),则:函数的表达式为:y=ax2+bx﹣3,把B点坐标代入上式得:9=25a+5b﹣3②,联立①、②解得:a,b,c=﹣3,∴抛物线的解析式为:yx2x﹣3. 当x=2时,y,即顶点D的坐标为(2,); (2)A(0,﹣3),B(5,9),则AB=13,设点C坐标(m,0),分三种情况讨论: ①当AB=AC时,则:(m)2+(﹣3)2=132,解得:m=±4,即点C坐标为:(4,0)或(﹣4,0); ②当AB=BC时,则:(5﹣m)2+92=132,解得:m=5,即:点C坐标为(5,0)或(5﹣2,0); ③当AC=BC时,则:5﹣m)2+92=(m)2+(﹣3)2,解得:m=,则点C坐标为(,0). 综上所述:存在,点C的坐标为:(±4,0)或(5,0)或(,0); (3)过点P作y轴的平行线交AB于点H.设直线AB的表达式为y=kx﹣3,把点B坐标代入上式,9=5k﹣3,则k,故函数的表达式为:yx﹣3,设点P坐标为(m,m2m﹣3),则点H坐标为(m,m﹣3),S△PAB•PH•xB(m2+12m)=-6m2+30m=,当m=时,S△PAB取得最大值为:. 答:△PAB的面积最大值为.
复制答案
考点分析:
相关试题推荐

数学课上学习了圆周角的概念和性质:顶点在圆上,两边与圆相交同弧所对的圆周角相等,小明在课后继续对圆外角和圆内角进行了探究.

下面是他的探究过程,请补充完整:

定义概念:顶点在圆外,两边与圆相交的角叫做圆外角,顶点在圆内,两边与圆相交的角叫做圆内角.如图1,∠M所对的一个圆外角.

(1)请在图2中画出所对的一个圆内角;

提出猜想

(2)通过多次画图、测量,获得了两个猜想:一条弧所对的圆外角______这条弧所对的圆周角;一条弧所对的圆内角______这条弧所对的圆周角;(大于等于小于”)

推理证明:

(3)利用图1或图2,在以上两个猜想中任选一个进行证明;

问题解决

经过证明后,上述两个猜想都是正确的,继续探究发现,还可以解决下面的问题.

(4)如图3FH是∠CDE的边DC上两点,在边DE上找一点P使得∠FPH最大.请简述如何确定点P的位置.(写出思路即可,不要求写出作法和画图)

 

查看答案

2016双十一期间,某快递公司计划租用甲、乙两种车辆快递货物,从货物量来计算:若租用两种车辆合运,10天可以完成任务;若单独租用乙种车辆,完成任务的天数是单独租用甲种车辆完成任务天数的2倍.

(1)求甲、乙两种车辆单独完成任务分别需要多少天?

(2)已知租用甲、乙两种车辆合运需租金65000元,甲种车辆每天的租金比乙种车辆每天的租金多1500元,试问:租甲和乙两种车辆、单独租甲种车辆、单独租乙种车辆这三种租车方案中,哪一种租金最少?请说明理由.

 

查看答案

已知关于x的一元二次方程x2+ax+a20

(1)若该方程的一个根为﹣2,求a的值及该方程的另一根;

(2)求证:无论a取何实数,该方程都有两个不相等的实数根.

 

查看答案

如图,已知菱形ABCD中,对角线ACBD相交于点O,过点CCEBD,过点DDEACCEDE相交于点E

(1)求证:四边形CODE是矩形;

(2)AB5AC6,求四边形CODE的周长.

 

查看答案

某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按ABCD四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:

(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)

1)请把条形统计图补充完整;

2)扇形统计图中D级所在的扇形的圆心角度数是多少?

3)若该校九年级有600名学生,请用样本估计体育测试中A级学生人数约为多少人?

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.