如图,直线AB.CD相交于点O,OE平分∠BOC,∠COF=90°.
(1)若∠BOE=70°,求∠AOF的度数;
(2)若∠BOD:∠BOE=1:2,求∠AOF的度数.
如图,直线AB与CD相交于点O,OF是以O为端点的射线.
(1)用量角器和直尺画∠EOD=∠BOF(点E在∠AOD的内部).
(2)若∠COF=90°,在(1)中,求∠AOE的大小.
如图,点B、E分别在直线AC和DF上,若∠AGB=∠EHF,∠C=∠D,可以证明∠A=∠F.请完成下面证明过程中的各项“填空”.
证明:∵∠AGB=∠EHF(理由: )
∠AGB= (对顶角相等)
∴∠EHF=∠DGF,∴DB∥EC(理由: )
∴ =∠DBA(两直线平行,同位角相等)
又∵∠C=∠D,∴∠DBA=∠D,
∴DF∥ (内错角相等,两直线平行)
∴∠A=∠F(理由: ).
在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.
(1)请画出平移后的△A′B′C′,并求△A′B′C′的面积;
(2)若连接AA′,CC′,则这两条线段之间的关系是 .
如图,将Rt△ABC沿射线BC方向平移得到△DEF,已知AB=16cm,BE=10cm,DH=6cm,则图中阴影部分的面积为__________.
如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠AEF,∠1=35º,那么∠2=______度.