满分5 > 初中数学试题 >

A城有某种农机30台,B城有该农机40台,现要将这些农机全部运往C,D两乡,调运...

A城有某种农机30,B城有该农机40,现要将这些农机全部运往C,D两乡,调运任务承包给某运输公司.已知C乡需要农机34,D乡需要农机36,A城往C,D两乡运送农机的费用分别为250/台和200/,B城往C,D两乡运送农机的费用分别为150/台和240/.

(1)A城运往C乡该农机x,运送全部农机的总费用为W,W关于x的函数关系式,并写出自变量x的取值范围.

(2)现该运输公司要求运送全部农机的总费用不低于16460,则有多少种不同的调运方案?将这些方案设计出来.

(3)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a(a≤200)作为优惠,其他费用不变,如何调运,使总费用最少?

 

(1)W=140x+12540(0<x≤30);(2)有3种不同的调运方案,具体见解析;(3)从A城调往C城30台,调往D城0台,从,B城调往C城4台,调往D城36台. 【解析】 (1)A城运往C乡的化肥为x吨,则可得A城运往D乡的化肥为30-x吨,B城运往C乡的化肥为34-x吨,B城运往D乡的化肥为40-(34-x)吨,从而可得出W与x大的函数关系. (2)根据题意得140x+12540≥16460求得28≤x≤30,于是得到有3种不同的调运方案,写出方案即可; (3)根据题意得到W=(140-a)x+12540,所以当a=200时,y=-60x+12540,此时x=30时,=10740元.于是得到结论. 本题解析: (1)W=250x+200(30﹣x)+150(34﹣x)+240(6+x)=140x+12540(0<x≤30); (2)根据题意得140x+12540≥16460,∴x≥28, ∵x≤30,∴28≤x≤30,∴有3种不同的调运方案, 第一种调运方案:从A城调往C城28台,调往D城2台,从,B城调往C城6台,调往D城34台; 第二种调运方案:从A城调往C城29台,调往D城1台,从,B城调往C城5台,调往D城35台; 第三种调运方案:从A城调往C城30台,调往D城0台,从,B城调往C城4台,调往D城36台, (3)W=x+200(30﹣x)+150(34﹣x)+240(6+x)=x+12540, 所以当a=200时,y最小=﹣60x+12540,此时x=30时y最小=10740元. 此时的方案为:从A城调往C城30台,调往D城0台,从,B城调往C城4台,调往D城36台.
复制答案
考点分析:
相关试题推荐

如图,已知PQ△ABCBC边上的两点,且BP=AP=AQ=QC∠PAQ=60°.

(1)求证:AB=AC

(2)∠BAC的度数.

 

查看答案

如图所示,AB>AC,A的平分线与BC的垂直平分线相交于点D,DEAB于点E,DFAC于点F.求证:BE=CF.

 

查看答案

如图,8×5的正方形网格中,每个小正方形的边长均为1,ABC的三个顶点均在小正方形的顶点上.

(1)在图1中画ABD(D在小正方形的顶点上),使ABD的周长等于ABC的周长,且以A,B,C,D为顶点的四边形是轴对称图形;

(2)在图2中画ABE(E在小正方形的顶点上),使ABE的周长等于ABC的周长,且以A,B,C,E为顶点的四边形是中心对称图形,并直接写出该四边形的面积.

 

查看答案

如图,ABC,ACB=90°,A=30°,AB的垂直平分线分别交ABAC于点D,E.

(1)求证:AE=2CE;

(2)连接CD,请判断BCD的形状,并说明理由.

 

查看答案

如图,在平面直角坐标系中,△ABC三个顶点分别为A(-14)B(-31)C(-34)△A1B1C1是由△ABC绕某一点旋转得到的.

(1)请直接写出旋转中心的坐标是________,旋转角是_____°

(2)△ABC平移得到△A2B2C2,使得点A2的坐标为(0-1),请画出平移后的△A2B2C2,并求出平移的距离.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.