满分5 > 初中数学试题 >

如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两...

如图,已知抛物线y=﹣x2+bx+c与一直线相交于A10)、C(﹣23)两点,与y轴交于点N,其顶点为D

1)求抛物线及直线AC的函数关系式;

2)若P是抛物线上位于直线AC上方的一个动点,求APC的面积的最大值及此时点P的坐标;

3)在对称轴上是否存在一点M,使ANM的周长最小.若存在,请求出M点的坐标和ANM周长的最小值;若不存在,请说明理由.

 

(1)y=﹣x2﹣2x+3;y=﹣x+1;(2)当x=﹣时,△APC的面积取最大值,最大值为,此时点P的坐标为(﹣,);(3)在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为3. 【解析】 (1)根据点A,C的坐标,利用待定系数法即可求出抛物线及直线AC的函数关系式;(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),进而可得出PF的值,由点C的坐标可得出点Q的坐标,进而可得出AQ的值,利用三角形的面积公式可得出S△APC=﹣x2﹣x+3,再利用二次函数的性质,即可解决最值问题;(3)利用二次函数图象上点的坐标特征可得出点N的坐标,利用配方法可找出抛物线的对称轴,由点C,N的坐标可得出点C,N关于抛物线的对称轴对称,令直线AC与抛物线的对称轴的交点为点M,则此时△ANM周长取最小值,再利用一次函数图象上点的坐标特征求出点M的坐标,以及利用两点间的距离公式结合三角形的周长公式求出△ANM周长的最小值即可得出结论. (1)将A(1,0),C(﹣2,3)代入y=﹣x2+bx+c,得: ,解得:, ∴抛物线的函数关系式为y=﹣x2﹣2x+3; 设直线AC的函数关系式为y=mx+n(m≠0), 将A(1,0),C(﹣2,3)代入y=mx+n,得: ,解得:, ∴直线AC的函数关系式为y=﹣x+1. (2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,如图1所示. 设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1), ∴PE=﹣x2﹣2x+3,EF=﹣x+1,EF=PE﹣EF=﹣x2﹣2x+3﹣(﹣x+1)=﹣x2﹣x+2. ∵点C的坐标为(﹣2,3), ∴点Q的坐标为(﹣2,0), ∴AQ=1﹣(﹣2)=3, ∴S△APC=AQ•PF=﹣x2﹣x+3=﹣(x+)2+ . ∵﹣<0, ∴当x=﹣时,△APC的面积取最大值,最大值为,此时点P的坐标为(﹣, ). (3)当x=0时,y=﹣x2﹣2x+3=3, ∴点N的坐标为(0,3). ∵y=﹣x2﹣2x+3=﹣(x+1)2+4, ∴抛物线的对称轴为直线x=﹣1. ∵点C的坐标为(﹣2,3), ∴点C,N关于抛物线的对称轴对称. 令直线AC与抛物线的对称轴的交点为点M,如图2所示. ∵点C,N关于抛物线的对称轴对称, ∴MN=CM, ∴AM+MN=AM+MC=AC, ∴此时△ANM周长取最小值. 当x=﹣1时,y=﹣x+1=2, ∴此时点M的坐标为(﹣1,2). ∵点A的坐标为(1,0),点C的坐标为(﹣2,3),点N的坐标为(0,3), ∴AC= =3,AN= =, ∴C△ANM=AM+MN+AN=AC+AN=3+. ∴在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为3+.
复制答案
考点分析:
相关试题推荐

如图,在△ABC中,∠C=90°,∠ABC的平分线BE交AC于点E,过点E作直线BE的垂线交AB于点F,⊙O是△BEF的外接圆.

(1)求证:AC是⊙O的切线;

(2)过点E作EH⊥AB于点H,求证:EF平分∠AEH;

(3)求证:CD=HF.

 

查看答案

某种新商品每件进价是120元,在试销期间发现,当每件商品售价为130元时,每天可销售70件,当每件商品售价高于130元时,每涨价1元,日销售量就减少1件.据此规律,请回答:

(1)当每件商品售价定为170元时,每天可销售多少件商品商场获得的日盈利是多少?

(2)在商品销售正常的情况下,每件商品的涨价为多少元时,商场日盈利最大?最大利润是多少?

 

查看答案

如图,AD 是△ABC 外角∠EAC 的平分线,AD 与△ABC 的外接圆⊙O 交于点 D.

(1)求证:DB=DC;

(2)若∠CAB=30°,BC=4,求劣弧 CD 的长度.

 

查看答案

某校在宣传民族团结活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.

请结合图中所给信息,解答下列问题:

(1)本次调查的学生共有_____人;

(2)补全条形统计图;

(3)该校共有1200名学生,请估计选择唱歌的学生有多少人?

(4)七年一班在最喜欢器乐的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.

 

查看答案

2015年底某市汽车拥有量为100万辆,而截止到2017年底,该市的汽车拥有量已达到144万辆.

1)求2015年底至2017年底该市汽车拥有量的年平均增长率;

2)若年增长率保持不变,预计2018年底该市汽车拥有量将达到多少万辆.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.