(1)已知,如图①,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E,求证:DE=BD+CE.
(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意钝角,请问结论DE=BD+CE是否成立?若成立,请你给出证明:若不成立,请说明理由.
如图1所示,边长为a的正方形中有一个边长为b的小正方形,如图2所示是由图1中阴影部分拼成的一个正方形.
(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2.请直接用含a,b的代数式表示S1,S2;
(2)请写出上述过程所揭示的乘法公式;
(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+1.
阅读下列材料:
小明遇到一个问题:在中,,,三边的长分别为、、,求的面积.
小明是这样解决问题的:如图①所示,先画一个正方形网格(每个小正方形的边长为),再在网格中画出格点(即三个顶点都在小正方形的顶点处),从而借助网格就能计算出的面积.他把这种解决问题的方法称为构图法.
参考小明解决问题的方法,完成下列问题:
()图是一个的正方形网格(每个小正方形的边长为) .
①利用构图法在答卷的图中画出三边长分别为、、的格点.
②计算①中的面积为__________.(直接写出答案)
()如图,已知,以,为边向外作正方形,,连接.
①判断与面积之间的关系,并说明理由.
②若,,,直接写出六边形的面积为__________.
解方程:=2
先化简代数式1﹣÷,并从﹣1,0,1,3中选取一个合适的代入求值.
如图,每个小正方形的边长都为1,A、B、C是小正方形的顶点,则∠ABC=_____°.