满分5 > 初中数学试题 >

如图所示,点A为小红家的位置,点B为小明家的位置,点C为学校的位置,三地之间的距...

如图所示,点A为小红家的位置,点B为小明家的位置,点C为学校的位置,三地之间的距离如图,已知学校在小明家的正西方向,则小红家在小明家的__________方向.

 

正北 【解析】 根据题中给出的三条边的关系,可知,也就是说这个三角形是直角三角形,而学校在小明家的正东方,所以小红家在小明家的正北方,据此解答即可. 【解析】 因为,所以小明家、小红家、学校三点构成了一个直角三角形,而学校在小明家的正东方,则小红家在小明家的正北方向. 故答案为: 小红家在小明家的正北方向.
复制答案
考点分析:
相关试题推荐

如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________.

 

查看答案

如图,点M为锐角三角形ABC内任意一点,连接AM、BM、CM.以AB为一边向外作等边三角形△ABE,将BM绕点B逆时针旋转60°得到BN,连接EN.

(1)求证:△AMB≌△ENB;

(2)若AM+BM+CM的值最小,则称点M△ABC的费马点.若点M△ABC的费马点,试求此时∠AMB、∠BMC、∠CMA的度数;

(3)小翔受以上启发,得到一个作锐角三角形费马点的简便方法:如图,分别以△ABCAB、AC为一边向外作等边△ABE和等边△ACF,连接CE、BF,设交点为M,则点M即为△ABC的费马点.试说明这种作法的依据.

 

查看答案

如图,已知△ABC中,ABAC,∠C=30°,ABAD

(1)求∠BDA的度数;

(2)若AD=2,求BC的长.

 

查看答案

2016双十一期间,某快递公司计划租用甲、乙两种车辆快递货物,从货物量来计算:若租用两种车辆合运,10天可以完成任务;若单独租用乙种车辆,完成任务的天数是单独租用甲种车辆完成任务天数的2倍.

(1)求甲、乙两种车辆单独完成任务分别需要多少天?

(2)已知租用甲、乙两种车辆合运需租金65000元,甲种车辆每天的租金比乙种车辆每天的租金多1500元,试问:租甲和乙两种车辆、单独租甲种车辆、单独租乙种车辆这三种租车方案中,哪一种租金最少?请说明理由.

 

查看答案

(1)已知,如图①,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E,求证:DE=BD+CE.

(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意钝角,请问结论DE=BD+CE是否成立?若成立,请你给出证明:若不成立,请说明理由.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.