如图,CD⊥AB,点E,F,G分别在BC,AB,AC上,且EF⊥AB,DG∥BC.
(1)若∠B=35°,求∠1的度数;
(2)试判断∠1,∠2的数量关系,并说明理由.
已知:如图,BE∥GF,∠1=∠3,∠DBC=70°,求∠EDB的大小.
阅读下面的解答过程,并填空(理由或数学式)
【解析】
∵BE∥GF(已知)
∴∠2=∠3( )
∵∠1=∠3( )
∴∠1=( )( )
∴DE∥( )( )
∴∠EDB+∠DBC=180°( )
∴∠EDB=180°﹣∠DBC(等式性质)
∵∠DBC=( )(已知)
∴∠EDB=180°﹣70°=110°
如图,直线AB、CD相交于O点,∠AOC与∠AOD的度数比为4:5,OE⊥AB,OF平分∠DOB,求∠EOF的度数.
如图,∠1=∠2,∠3=125°,则∠4等于_____.
如图,AB与CD交于点O,OE平分∠AOC,点F为AB上一点(不与点A及O重合),过点F作FG∥OE,交CD于点G,若∠AOD=110°,则∠AFG度数为_____.
如图,直线a、b被直线c所截,a∥b,若∠1=80°,则∠2的大小为_____度.