满分5 > 初中数学试题 >

完成下列推理过程: 已知:如图,∠1+∠2=180°,∠3=∠B 求证:∠EDG...

完成下列推理过程:

已知:如图,∠1+2=180°,3=B

求证:∠EDG+DGC=180°

证明:∵∠1+2=180°(已知)

1+DFE=180°(     

∴∠2=          

EFAB(     

∴∠3=          

又∵∠3=B(已知)

∴∠B=ADE(     

DEBC(     

∴∠EDG+DGC=180°(     

 

邻补角定义;∠DFE,同角的补角相等;内错角相等,两直线平行;∠ADE,两直线平行,内错角相等;等量代换;同位角相等,两直线平行;两直线平行,同旁内角互补 【解析】 依据∠1+∠2=180°,∠1+∠DFE=180°,即可得到∠2=∠DFE,由内错角相等,两直线平行证明EF∥AB,则∠3=∠ADE,再根据∠3=∠B,由同位角相等,两直线平行证明DE∥BC,故可根据两直线平行,同旁内角互补,即可得出结论. ∵∠1+∠2=180°(已知) ∠1+∠DFE=180°(邻补角定义) ∴∠2=∠DFE(同角的补角相等) ∴EF∥AB(内错角相等,两直线平行) ∴∠3=∠ADE(两直线平行,内错角相等) 又∵∠3=∠B(已知) ∴∠B=∠ADE(等量代换) ∴DE∥BC(同位角相等,两直线平行) ∴∠EDG+∠DGC=180°(两直线平行,同旁内角互补)
复制答案
考点分析:
相关试题推荐

如图,AD∥BC,∠DAC=120°,∠ACF=20°,∠EFC=140°.求证:EF∥AD.

 

查看答案

如图,已知点EF在直线AB上,点G在线段CD上,EDFG交于点H,∠C=∠EFG,∠CED=∠GHD

1)求证:CEGF

2)试判断∠AED与∠D之间的数量关系,并说明理由;

3)若∠EHF80°,∠D30°,求∠AEM的度数.

 

查看答案

如图,已知直线AB、CD、EF相交于点O,OGCD,BOD=36°.

(1)求∠AOG的度数;

(2)若OG是∠AOF的平分线,那么OC是∠AOE的平分线吗?说明你的理由.

 

查看答案

已知;如图,在四边形ABCD中,ABCD,BAD,ADC的平分线AE、DF分别与线段BC相交于点E、F,AEDF相交于点G,求证:AEDF.

 

查看答案

如图,直线ABCD相交于O点,OECD,OC平分∠AOF,EOF=56°,

(1)求∠BOD的度数;

(2)写出图中所有与∠BOE互余的角,它们分别是     

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.