满分5 > 初中数学试题 >

如图,在四边形ABCD中,E、F分别是CD、AB延长线上的点,连结EF,分别交A...

如图,在四边形ABCD中,E、F分别是CD、AB延长线上的点,连结EF,分别交AD、BC于点G、H.若∠1=2,A=C,试说明ADBCABCD.

请完成下面的推理过程,并填空(理由或数学式):

∵∠1=2(     

1=AGH(     

∴∠2=AGH(     

ADBC(     

∴∠ADE=C(     

∵∠A=C(     

∴∠ADE=A

ABCD(     

 

见解析. 【解析】 先根据同位角相等,两直线平行,判定AD∥BC,进而得到∠ADE=∠C,再根据内错角相等,两直线平行,即可得到AB∥CD. 证明:∵∠1=∠2(已知) ∠1=∠AGH(对顶角相等) ∴∠2=∠AGH(等量代换) ∴AD∥BC(同位角相等,两直线平行) ∴∠ADE=∠C(两直线平行,同位角相等) ∵∠A=∠C(已知) ∴∠ADE=∠A ∴AB∥CD(内错角相等,两直线平行) 故答案为:已知;对顶角相等;等量代换;同位角相等,两直线平行;两直线平行,同位角相等;已知;内错角相等,两直线平行.
复制答案
考点分析:
相关试题推荐

(感知)如图①,ABCD,点E在直线ABCD之间,连结AE、BE,试说明∠BEE+DCE=AEC.下面给出了这道题的解题过程,请完成下面的解题过程,并填空(理由或数学式):

【解析】
如图①,过点
EEFAB

∴∠BAE=1(     

ABCD(     

CDEF(     

∴∠2=DCE

∴∠BAE+DCE=1+2(     

∴∠BAE+DCE=AEC

(探究)当点E在如图②的位置时,其他条件不变,试说明∠AEC+FGC+DCE=360°;

(应用)点E、F、G在直线ABCD之间,连结AE、EF、FGCG,其他条件不变,如图③.若∠EFG=36°,则∠BAE+AEF+FGC+DCG=     °.

 

查看答案

探究:

如图,在△ABC中,点DEF分别在边ABACCB上,且DEBCEFAB,若∠ABC=65°,求∠DEF的度数.请将下面的解答过程补充完整,并填空(理由或数学式):

【解析】
DEBC(     )

∴∠DEF     (     )

EFAB

     =∠ABC(     )

∴∠DEF=∠ABC(     )

∵∠ABC=65°

∴∠DEF     

应用:

如图,在△ABC中,点DEF分别在边ABACBC的延长线上,且DEBCEFAB,若∠ABC=β,则∠DEF的大小为     (用含β的代数式表示).

 

查看答案

如图,∠E=50°,BAC=50°,D=110°,求∠ABD的度数.

请完善解答过程,并在括号内填写相应的理论依据.

【解析】
∵∠
E=50°,BAC=50°,(已知)

∴∠E=     (等量代换)

          .(     

∴∠ABD+D=180°.(     

∴∠D=110°,(已知)

∴∠ABD=70°.(等式的性质)

 

查看答案

已知:如图,BEGF,∠1=∠3,∠DBC=70°,求∠EDB的大小.

阅读下面的解答过程,并填空(理由或数学式)

【解析】
BEGF(已知)

∴∠2=∠3(     )

∵∠1=∠3(     )

∴∠1=(     )(     )

DE∥(     )(     )

∴∠EDB+∠DBC=180°(     )

∴∠EDB=180°﹣∠DBC(等式性质)

∵∠DBC=(     )(已知)

∴∠EDB=180°﹣70°=110°

 

查看答案

如图,ABBC于点BDCBC于点CDE平分∠ADCBC于点E,点F为线段CD延长线上一点,∠BAF=∠EDF

(1)求证:∠DAF=∠F

(2)在不添加任何辅助线的情况下,请直接写出所有与∠CED互余的角.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.