如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.
(1)试判断直线AB与直线CD的位置关系,并说明理由;
(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;
(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.
问题情境:如图1,,,.求度数.
小明的思路是:如图2,过作,通过平行线性质,可得.
问题迁移:
(1)如图3,,点在射线上运动,当点在、两点之间运动时,,.、、之间有何数量关系?请说明理由;
(2)在(1)的条件下,如果点在、两点外侧运动时(点与点、、三点不重合),请你直接写出、、间的数量关系.
如图,∠ABC=∠ADC,BF,DE是∠ABC、∠ ADC的角平分线,∠1=∠2.
求证DC∥AB.
(探究)如图①,∠AFH和∠CHF的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.
(1)若∠AFH=60°,∠CHF=50°,则∠EOF=_____度,∠FOH=_____度.
(2)若∠AFH+∠CHF=100°,求∠FOH的度数.
(拓展)如图②,∠AFH和∠CHI的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.若∠AFH+∠CHF=α,直接写出∠FOH的度数.(用含a的代数式表示)
三角板是学习数学的重要工具,将一副三角板中的两块直角三角板的直角顶点按如图方式叠放在一起,当且点在直线的上方时,解决下列问题:(友情提示:,,.
(1)①若,则的度数为 ;
②若,则的度数为 ;
(2)由(1)猜想与的数量关系,并说明理由.
(3)这两块三角板是否存在一组边互相平行?若存在,请直接写出的角度所有可能的值(不必说明理由);若不存在,请说明理由.
如图,在四边形ABCD中,E、F分别是CD、AB延长线上的点,连结EF,分别交AD、BC于点G、H.若∠1=∠2,∠A=∠C,试说明AD∥BC和AB∥CD.
请完成下面的推理过程,并填空(理由或数学式):
∵∠1=∠2( )
∠1=∠AGH( )
∴∠2=∠AGH( )
∴AD∥BC( )
∴∠ADE=∠C( )
∵∠A=∠C( )
∴∠ADE=∠A
∴AB∥CD( )