下列命题中,是假命题的是( )
A. 相等的角是对顶角 B. 若|x|=3,则x=±3
C. 同一平面内,两条直线的位置关系只有相交和平行两种 D. 两点确定一条直线
对于数轴上的A,B,C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“联盟点”.
例如数轴上点A,B,C所表示的数分别为1,3,4,此时点B是点A, C的“联盟点”.
(1)若点A表示数-2, 点B表示的数2,下列各数,0,4,6所对应的点分别C1,C2 ,C3 ,C4,其中是点A,B的“联盟点”的是 ;
(2)点A表示数-10, 点B表示的数30,P在为数轴上一个动点:
①若点P在点B的左侧,且点P是点A, B的“联盟点”,求此时点P表示的数;
②若点P在点B的右侧,点P,A, B中,有一个点恰好是其它两个点的“联盟点”,写出此时点P表示的数 .
2018年9月17日世界人工智能大会在上海召开,人工智能的变革力在教育、制造等领域加速落地. 在某市举办的一次中学生机器人足球赛中,有四个代表队进入决赛,决赛中,每个队分别与其它三个队进行主客场比赛各一场(即每个队要进行6场比赛),以下是积分表的一部分.
排名 | 代表队 | 场次 (场) | 胜 (场) | 平 (场) | 负 (场) | 净胜球 (个) | 进球 (个) | 失球 (个) | 积分 (分) |
1 | A | 6 |
|
| 1 | 6 | 12 | 6 | 22 |
2 | B | 6 | 3 | 2 | 1 | 0 | 6 | 6 | 19 |
3 | C | 6 | 3 | 1 | 2 | 2 | 9 | 7 | 17 |
4 | D | 6 | 0 | 0 | 6 | m | 5 | 13 | 0 |
(说明:积分=胜场积分+平场积分+负场积分)
(1)D代表队的净胜球数m= ;
(2)本次决赛中,胜一场积 分,平一场积 分,负一场积 分;
(3)此次竞赛的奖金分配方案为:进入决赛的每支代表队都可以获得参赛奖金6000元;另外,在决赛期间,每胜一场可以再获得奖金2000元,每平一场再获得奖金1000元.
请根据表格提供的信息,求出冠军A队一共能获得多少奖金.
列方程解应用题
改革开放40年来,我国铁路发生了巨大变化,现在的铁路运营里程比1978年的铁路运营里程多了75000公里,其中高铁更是迅猛发展,其运营里程约占现在铁路运营里程的20%,只差600公里就达到了1978年的铁路运营里程的一半.问1978年的铁路运营里程是多少公里.
填空,完成下列说理过程
如图,∠AOB=90°,∠COD=90°,OA平分∠DOE,若∠BOC=20°,求∠COE的度数
【解析】
因为∠AOB=90°.
所以∠BOC+∠AOC=90°
因为∠COD=90°
所以∠AOD+∠AOC=90°.
所以∠BOC=∠AOD. ( )
因为∠BOC=20°.
所以∠AOD=20°.
因为OA平分∠DOE
所以∠ =2∠AOD= °. ( )
所以∠COE=∠COD﹣∠DOE= °
尺规作图,补全下面的作图过程(保留画图痕迹).
如图,∠MON=90°,点P在射线ON上.
作法:①在射线ON上截取PA=OP;
②在射线OM上作OQ=OP,OB=OA;
③连接PQ,AB.
根据上面的作图过程,回答:
(1)测量得到点P,Q之间的距离为 cm ,
测量得到点A,B之间的距离为 cm;
(2)猜想PQ与AB之间的数量关系: .