满分5 > 初中数学试题 >

已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线...

已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AGDBCB的延长线于G.

(1)求证:△ADE≌△CBF;

(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.

 

(1)证明:∵四边形ABCD是平行四边形, ∴∠4=∠C,AD=CB,AB=CD. ∵点E、F分别是AB、CD的中点, ∴AE=AB,CF=CD. ∴AE=CF. ∴△ADE≌△CBF(SAS). (2)【解析】 当四边形BEDF是菱形时,四边形AGBD是矩形. 证明:∵四边形ABCD是平行四边形, ∴AD∥BC. ∵AG∥BD, ∴四边形AGBD是平行四边形. ∵四边形BEDF是菱形, ∴DE=BE. ∵AE=BE, ∴AE=BE=DE. ∴∠1=∠2,∠3=∠4. ∵∠1+∠2+∠3+∠4=180°, ∴2∠2+2∠3=180°. ∴∠2+∠3=90°. 即∠ADB=90°. ∴四边形AGBD是矩形. 【解析】 (1)在证明全等时常根据已知条件,分析还缺什么条件,然后用(SAS,ASA,SSS)来证明全等; (2)先由菱形的性质得出AE=BE=DE,再通过角之间的关系求出∠2+∠3=90°即∠ADB=90°,所以判定四边形AGBD是矩形. 解:证明:∵四边形是平行四边形, ∴,,. ∵点、分别是、的中点, ∴,. ∴. 在和中, , ∴. 【解析】 当四边形是菱形时,四边形是矩形. 证明:∵四边形是平行四边形, ∴. ∵, ∴四边形是平行四边形. ∵四边形是菱形, ∴. ∵, ∴. ∴,. ∵, ∴. ∴. 即. ∴四边形是矩形.
复制答案
考点分析:
相关试题推荐

2016双十一期间,某快递公司计划租用甲、乙两种车辆快递货物,从货物量来计算:若租用两种车辆合运,10天可以完成任务;若单独租用乙种车辆,完成任务的天数是单独租用甲种车辆完成任务天数的2倍.

(1)求甲、乙两种车辆单独完成任务分别需要多少天?

(2)已知租用甲、乙两种车辆合运需租金65000元,甲种车辆每天的租金比乙种车辆每天的租金多1500元,试问:租甲和乙两种车辆、单独租甲种车辆、单独租乙种车辆这三种租车方案中,哪一种租金最少?请说明理由.

 

查看答案

某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.根据统计图的信息解决下列问题

(1)本次调查的学生有多少人?

(2)补全上面的条形统计图;

(3)扇形统计图中C对应的中心角度数是_____

(4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?

 

查看答案

某小区开展了行车安全,方便居民的活动,对地下车库作了改进.如图,这小区原地下车库的入口处有斜坡AC长为13米,它的坡度为i12.4ABBC,为了居民行车安全,现将斜坡的坡角改为13°,即∠ADC13°(此时点BCD在同一直线上).

1)求这个车库的高度AB

2)求斜坡改进后的起点D与原起点C的距离(结果精确到0.1米).

(参考数据:sin13°≈0.225cos13°≈0.974tan13°≈0.231cot13°≈4.331

 

查看答案

对一批西装质量抽检情况如下表:

(1)从这批西装中任选一套,是次品的概率是多少?

(2)若要销售这批西装2000件,为了方便购买了次品西装的顾客前来调换,至少应进多少件西装?

 

查看答案

(1)解不等式组:

(2)化简:(﹣2)•

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.