下列四种说法:
①过一点有且只有一条直线与已知直线平行;
②在同一平面内,两条不相交的线段是平行线段;
③相等的角是对顶角;
④在同一平面内,若直线AB∥CD,直线AB与EF相交,则CD与EF相交.
其中,错误的是__________________________(填序号).
在同一平面内,两条不相重合的直线位置关系有两种:_____和_____.
平行用符号_____表示,直线AB与CD平行,可以记作为_____.
经过直线外一点, 一条直线与这条直线平行。
如图,已知抛物线y=ax2+ x+c与x轴交于A,B两点,与y轴交于丁C,且A(2,0),C(0,﹣4),直线l:y=﹣ x﹣4与x轴交于点D,点P是抛物线y=ax2+x+c上的一动点,过点P作PE⊥x轴,垂足为E,交直线l于点F.
(1)试求该抛物线表达式;
(2)求证:点C在以AD为直径的圆上;
(3)是否存在点P使得四边形PCOF是平行四边形,若存在求出P点的坐标,不存在请说明理由。
在平面直角坐标系xOy中,正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如图的方式放置.点A1,A2,A3,…,An和点C1,C2,C3,…,Cn分别落在直线y=x+1和x轴上.抛物线L1过点A1,B1,且顶点在直线y=x+1上,抛物线L2过点A2,B2,且顶点在直线y=x+1上,…,按此规律,抛物线Ln过点An,Bn,且顶点也在直线y=x+1上,其中抛物线L2交正方形A1B1C1O的边A1B1于点D1,抛物线L3交正方形A2B2C2C1的边A2B2于点D2,…,抛物线Ln+1交正方形AnBnCnCn-1的边AnBn于点Dn(其中n≥2且n为正整数).
(1)直接写出下列点的坐标:B1________,B2________,B3________;
(2)写出抛物线L2、L3的解析式,并写出其中一个解析式求解过程,再猜想抛物线Ln的顶点坐标
(3)设A1D1=k1·D1B1,A2D2=k2·D2B2,试判断k1与k2的数量关系并说明理由.