定义:有一条对角线平分一组对角的四边形叫做筝形.
探究:(1)如图1,四边形ABCD中,AB=BC,AD=DC,求证:四边形ABCD是筝形;
(2)下列关于筝形的性质表述正确的是 ;(把你认为正确的序号填在横线上)
①筝形的对角线互相垂直平分; ②筝形中至少有一对对角相等;
③筝形是轴对称图形; ④筝形的面积等于两条对角线长的积的一半.
应用:
(3)如图2,在筝形ABCD中,AB≠AD,若∠ABC=60°,∠ADC=30°,AD=4,请求出对角线BD的长.
随着人们生活水平的提高,汽车已进入百姓家庭,汽车产业是某市的支柱产业之一,产量和效益逐年增加,据统计,2016年该市某品牌汽车的年产量为10万辆,而到了2018年,该品牌汽车的年产量达到14.4万辆.
(1)求这两年该品牌汽车的平均增长率;
(2)若该品牌汽车年产量的平均增长率从2018年开始两年内保持不变,则该品牌汽车2019年的年产量为多少万辆?
甲乙两人在相同条件下各射靶10次,甲10次射靶的成绩的情况如图所示,乙10次射靶的成绩依次是:3环、4环、5环、8环、7环、7环、8环、9环、9环、10环.
(1)请在图中画出乙的射靶成绩的折线图;
(2) 请从下列两个不同角度对这次测试结果进行分析.
①从平均数和方差相结合看(分析谁的成绩稳定些);
②从平均数和中位数相结合看(分析谁的成绩好些).
如图,在5×5的正方形网格中,每个小正方形的边长为1,请在所给网格中按下列要求画出图形.
(1)已知点A在格点(即小正方形的顶点)上,画一条线段AB,长度为,且点B在格点上.
(2)以上题所画的线段AB为一边,另外两条边长分别为,. 画一个△ABC,使点C在格点上(只需画出符合条件的一个三角形).
(3)所画出的△ABC的边AB上的高线长为 .(直接写出答案)
如图所示,在ABCD中,E,F分别是AC,CA的延长线上的点,且CE=AF.
求证:BF∥DE.
解方程:
(1). (2)