如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.
(1)求证:AE=CD;
(2)若AC=12cm,求BD的长.
如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.
(1)求证:BF=2AE;
(2)若CD=,求AD的长.
如图,点P,M,N分别在等边△ABC的各边上,且MP⊥AB,MN⊥BC,PN⊥AC.
(1)求证:△PMN是等边三角形;
(2)若AB=9 cm,求CM的长度.
如图,在△ABC中,∠ACB=90°,D是BC的延长线上一点,EH是BD的垂直平分线,DE交AC于F,求证:E在AF的垂直平分线上.
已知,如图,直线AB与直线BC相交于点B,点D是直线BC上一点
求作:点E,使直线DE∥AB,且点E到B、D两点的距离相等(在题目的原图中完成作图)
结论:
用反证法证明:在一个三角形中至少有两个角是锐角.