如图所示,某大学的楼门是一抛物线形水泥建筑物,大门的地面宽度为,两侧距离地面高处各有一个挂校名横匾用的铁环,两铁环的水平距离为,则校门的高约为(精确到,水泥建筑物的厚度忽略不计)( )
A. 9.2m B. 9.1m C. 9.0m D. 8.9m
如图是某地区一条公路隧道入口在平面直角坐标系中的示意图,点A和A1、点B和B1分别关于y轴对称.隧道拱部分BCB1为一段抛物线,最高点C离路面AA1的距离为8 m,点B离路面AA1的距离为6 m,隧道宽AA1为16 m.
(1)求隧道拱部分BCB1对应的函数表达式.
(2)现有一大型货车,装载某大型设备后,宽为4 m,装载设备的顶部离路面均为7 m,问:它能否安全通过这个隧道?并说明理由.
如图,拱桥呈抛物线形,其函数的表达式为y=-x2,当水位线在AB位置时,水面的宽度为12米,这时拱顶距水面的高度h是____米.
有一拱桥呈抛物线形状,这个桥洞的最大高度是16 m,跨度为40 m,现把它的示意图(如图所示)放在坐标系中,则抛物线对应的函数表达式为( )
A. y= B. y=
C. y=- D. y=-+16
如图,已知AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E,∠ADC =70°.
(1)求∠EDC的度数;(2)若∠ABC =n°,求∠BED的度数(用含n的代数式表示);
(3)将线段BC沿DC方向平移, 使得点B在点A的右侧,其他条件不变,画出图形并判断∠BED的度数是否改变,若改变,求出它的度数(用含n的式子表示),不改变,请说明理由.
如图,已知AB∥CD∥EF,GC⊥CF,∠ABC=65º,∠EFC=40º,求∠BCG的度数。