矩形具有而一般的平行四边形不一定具有的特征( )
A. 对角相等 B. 对角线相等
C. 对角线互相平分 D. 对边相等
如图,在□ABCD中,AC与BD相交于点O,则下列结论不一定成立的是( )
A. BO=DO B. ∠BAD=∠BCD C. CD=AB D. AC=BD
如图,在Rt△ABC中,∠ACB=90°,AB=10,CD是AB边上的中线,则CD的长是【 】
A.20 B.10 C.5 D.
(1)如图1,点P是平行四边形ABCD对角线AC、BD的交点,若S△PAB=S1,S△PBC=S2,S△PCD=S3,S△PAD=S4则S1、S2、S3、S4的关系为S1=S2=S3=S4.请你说明理由;
(2)变式1:如图2,点P是平行四边形ABCD内一点,连接PA、PB、PC、PD.若S△PAB=S1,S△PBC=S2,S△PCD=S3,S△PAD=S4,写出S1、S2、S3、S4的关系式;
(3)变式2:如图3,点P是四边形ABCD对角线AC、BD的交点若S△PAB=S1,S△PBC=S2,S△PCD=S3,S△PAD=S4,写出S1、S2、S3、S4的关系式.请你说明理由.
如图,在平行四边形ABCD中,∠B=∠AFE,EA是∠BEF的平分线,求证:
(1)△ABE≌△AFE;
(2)∠FAD=∠CDE.
如图,四边形ABCD是平行四边形,P是CD上一点,且AP和BP分别平分∠DAB和∠CBA.
(1)求∠APB的度数;
(2)如果AD=5 cm,AP=8 cm,求△APB的周长.