如图,△ABC中,AB=AC,∠BAC=90°,点D是直线AB上的一动点(不和A、B重合),BE⊥CD于E,交直线AC于F
(1)点D在边AB上时,试探究线段BD、AB和AF的数量关系,并证明你的结论;
(2)点D在AB的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请写出正确结论并证明。
先仔细阅读材料,再解决问题:
完全平方式x2±2xy+y2=(x±y)2以及(x±y)2的值为非负数的特点在数学学习中有广泛的应用,比如探求2x2+12x﹣4的最大(小)值时,我们可以配成完全平方式来解决:
【解析】
原式=2(x2+6x﹣2)=2(x2+6x+9﹣9﹣2)=2[(x+3)2﹣11]=2(x+3)2﹣22.
∵无论x取什么数,都有(x+3)2≥0,∴(x+3)2的最小值为0;
∴x=﹣3时,2(x+3)2﹣22的最小值是2×0﹣22=﹣22;
∴当x=﹣3时,2x2+12x﹣4的最小值是﹣22.
请根据上面的解题思路,解答下列问题:
(1)多项式3x2﹣6x+12的最小值是多少,并写出对应的x的值;
(2)判断多项式有最大值还是最小值,请你说明理由并求出当x为何值时,此多项式的最大值(或最小值)是多少.
(2011•德州)如图 AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.
(1)求证AD=AE;
(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.
(8分)(2015•聊城)在“母亲节”前夕,某花店用16000元购进第一批礼盒鲜花,上市后很快预售一空.根据市场需求情况,该花店又用7500元购进第二批礼盒鲜花.已知第二批所购鲜花的盒数是第一批所购鲜花的,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元?K]
在如图所示的平面直角坐标系中,△ABC的顶点坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).
(1)作△ABC关于y轴对称的△A1B1C1,并写出点A1、B1、C1的坐标;
(2)在y轴上画出点P,使PA+PB最小.