一元二次方程配方后可变形为( )
A. B. C. D.
下列事件中必然发生的事件是( )
A. 一个图形平移后所得的图形与原来的图形不全等
B. 不等式的两边同时乘以一个数,结果仍是不等式
C. 200件产品中有5件次品,从中任意抽取6件,至少有一件是正品
D. 随意翻到一本书的某页,这页的页码一定是偶数
在下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
(1)观察图形:
如图1,△ABC中,AB=AC,∠BAC=45°,CD⊥AB,AE⊥BC,垂足分别为D、E,CD与AE交于点F.
①写出图1中所有的全等三角形_________________;
②线段AF与线段CE的数量关系是_________________;
(2)问题探究:
如图2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BAC,AD⊥CD,垂足为D,AD与BC交于点E.
求证:AE=2CD.
(3)拓展延伸:
如图3,△ABC中,∠BAC=45°,AB=BC,点D在AC上,∠EDC=∠BAC,DE⊥CE,垂足为E,DE与BC交于点F.
求证:DF=2CE.
如图,△ABC中,AB=AC,∠BAC=90°,点D是直线AB上的一动点(不和A、B重合),BE⊥CD于E,交直线AC于F
(1)点D在边AB上时,试探究线段BD、AB和AF的数量关系,并证明你的结论;
(2)点D在AB的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请写出正确结论并证明。
先仔细阅读材料,再解决问题:
完全平方式x2±2xy+y2=(x±y)2以及(x±y)2的值为非负数的特点在数学学习中有广泛的应用,比如探求2x2+12x﹣4的最大(小)值时,我们可以配成完全平方式来解决:
【解析】
原式=2(x2+6x﹣2)=2(x2+6x+9﹣9﹣2)=2[(x+3)2﹣11]=2(x+3)2﹣22.
∵无论x取什么数,都有(x+3)2≥0,∴(x+3)2的最小值为0;
∴x=﹣3时,2(x+3)2﹣22的最小值是2×0﹣22=﹣22;
∴当x=﹣3时,2x2+12x﹣4的最小值是﹣22.
请根据上面的解题思路,解答下列问题:
(1)多项式3x2﹣6x+12的最小值是多少,并写出对应的x的值;
(2)判断多项式有最大值还是最小值,请你说明理由并求出当x为何值时,此多项式的最大值(或最小值)是多少.