满分5 > 初中数学试题 >

如图,在△ABC中,AB=AC=2,点P在BC上.若点P为BC的中点,则m=AP...

如图,在ABC中,ABAC2,点PBC上.若点PBC的中点,则mAP2+BP•PC的值为多少?若BC边上有100个不同的点P1P2P100,且miAPi2+BPi•PiCi12100),则mm1+m2+…+m100 的值为多少?

 

4,400. 【解析】 第一个空,由等腰三角形的三线合一性质和勾股定理得出AP2+BP2=AB2即可;第二个空,作AD⊥BC于D.根据勾股定理,得APi2=AD2+DPi2=AD2+(BD﹣BPi)2=AD2+BD2﹣2BD•BPi+BPi2,PiB•PiC=PiB•(BC﹣PiB)=2BD•BPi﹣BPi2,从而求得m1=AD2+BD2=AB2,即可求解. 【解析】 若点P为BC的中点,如图1所示: AB=AC=2, ∴AP⊥BC,BP=CP, ∴∠APB=90°, ∴AP2+BP•PC=AP2+BP2=AB2=4. 若BC边上有100个不同的点P1,P2,…,P100, 作AD⊥BC于D,则BC=2BD=2CD,如图2所示. 根据勾股定理,得 APi2=AD2+DPi2=AD2+(BD﹣BPi)2=AD2+BD2﹣2BD•BPi+BPi2, 又∵PiB•PiC=PiB•(BC﹣PiB)=2BD•BPi﹣BPi2, ∴m1=AD2+BD2=AB2=4, ∴m1+m2+…+m100=4×100=400. 故答案为:4,400.
复制答案
考点分析:
相关试题推荐

如图,函数y=﹣x与函数y=﹣的图象相交于AB两点,过AB两点分别作y轴的垂线,垂足分别为点CD.则四边形ACBD的面积为多少?.

 

查看答案

1234四个数中任取一个数作为AC的长度,又从45中任取一个数作为BC的长度,AB6,则ABACBC能构成三角形的概率是多少?.

 

查看答案

规定用符号[m]表示一个实数m的整数部分,例如:0[3.14]3.按此规定[+2]的值为________

 

查看答案

设α,β是方程x2﹣x﹣2019=0的两个实数根,则α3﹣2021α﹣β的值为_____

 

查看答案

如图,△ABC是⊙O内接三角形,∠ACB=45°,∠AOC=150°,过点C作⊙O切线交AB延长线于点D.

(1)求证:CD=CB;(2)如果⊙O的半径为,求AC的长.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.