若是关于x、y的方程2x﹣y+2a=0的一个解,则常数a为( )
A. 1 B. 2 C. 3 D. 4
如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是( )
A. B. C. D.
﹣27的立方根是( )
A. 3 B. ﹣3 C. ±3 D. ﹣3
如图,抛物线的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.
(1)求A、B、C的坐标;
(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PQMN的周长最大时,求△AEM的面积;
(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=DQ,求点F的坐标.
在四边形ABCD中,点E为AB边上一点,点F为对角线BD上的一点,且EF⊥AB.
(1)若四边形ABCD为正方形;
①如图1,请直接写出AE与DF的数量关系;
②将△EBF绕点B逆时针旋转到图2所示的位置,连接AE、DF,猜想AE与DF的数量关系并说明理由;
(2)如图3,若四边形ABCD为矩形,BC=mAB,其它条件都不变,将△EBF绕点B逆时针旋转α(0°<α<90°)得到△E′BF′,连接AE′,DF′,请在图3中画出草图,并求出AE′与DF′的数量关系.
某市政府大力支持大学生创业.李明在政府的扶持下投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量Y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500.
(1)设李明每月获得利润为W(元),当销售单价定为多少元时,每月获得利润最大?
(2)根据物价不门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元?