如图,在平面直角坐标系xOy中,二次函数的图象与轴,轴的交点分别为和.
(1)求此二次函数的表达式;
(2)结合函数图象,直接写出当时,的取值范围.
如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P顺时针旋转60°,得到线段PQ,连接BQ.
(1)如图1,当点P在线段BC上时,试猜想写出线段CP与BQ的数量关系,并证明你的猜想;
(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?(直接写“成立”或“不成立”即可,不需证明).
如图,一次函数y=kx+b与反比例函数y=的图象交于A(1,4),B(4,n)两点.
(1)求反比例函数和一次函数的解析式;
(2)直接写出当x>0时,kx+b<的解集.
(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.
有甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字1,2,3;乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,﹣3,现从甲袋中随机摸出一个小球,将标有的数字记录为x,再从乙袋中随机摸出一个小球,将标有的数字记录为y,确定点M的坐标为(x,y).
(1)用树状图或列表法列举点M所有可能的坐标;
(2)求点M(x,y)在反比例函数y=的图象上的概率.
某商店准备进一批季节性小家电,单价为每个40元,经市场预测,销售定价为每个52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个.商店若将准备获利2000元.
(1)该商店应考虑涨价还是降价?
(2)应进货多少个?定价为每个多少元?
已知BC是⊙O的直径,AD是⊙O的切线,切点为A,AD交CB的延长线于点D,连接AB,AO.
(1)如图①,求证:∠OAC=∠DAB;
(2)如图②,AD=AC,若E是⊙O上一点,求∠E的大小.