如图,木工师傅在做完门框后,为防止变形常常象图中所示那样钉上两条斜拉的木条图中的AB,CD两根木条,这样做是运用了三角形的
A. 全等性 B. 灵活性 C. 稳定性 D. 对称性
下列图形中不是轴对称图形的是( )
A. B. C. D.
如图,射线上有三点、、,满足OA=30cm,AB=90cm,BC=15cm,点从点出发,沿方向以秒的速度匀速运动,点从点出发在线段上向点匀速运动,两点同时出发,当点运动到点时,点、停止运动.
(1)若点运动速度为秒,经过多长时间、两点相遇?
(2)当时,点运动到的位置恰好是线段OB的中点,求点的运动速度;
(3)当点运动到线段上时,分别取和的中点、,求的值.
如图,直线、相交于点,平分.
(1)若,求的度数;
(2)若平分,∠BOF=12°,若设∠BOE=x°.
①则= . (用含的代数式表示)
②求的度数.
某市自来水公司为限制单位用水,每月只给某单位计划内用水300吨,计划内用水每吨收费3. 4元,超计划部分每吨按4. 6元收费.
(1)用代数式表示(所填结果需化简):
设用水量为吨,当用水量小于等于300吨,需付款 元;当用水量大于300吨,需付款 元.
(2)若某单位4月份缴纳水费1480元,则该单位用水多少吨?
(3)若某单位5、6月份共用水750吨(6月份用水量超过5月份),共交水费2790元,则该单位5、6月份各用水多少吨?
如图,所有小正方形的边长都为1,A、B、C都在格点上.
(1)过点B画直线AC的垂线,并注明垂足为G;
(2)线段 的长度是点B到直线AC的距离;
线段BC的长度是点 到直线 的距离;
(3)因为直线外一点与直线上各点连接的所有线段中,垂线段最短,所以线段BC、BG的大小关系为:BC BG.